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Abstract— This paper introduces a Relative Mapping 

Algorithm. This algorithm presents a new way of looking at the 

SLAM problem that does not use Probability, Iterative Closest 

Point, or Scan Matching techniques. A map of landmarks is 

generated by using the average relative location difference 

between landmarks.  This means the algorithm does not use any 

known, estimated or predicted movement or position data. In 

addition, the Relative Mapping Algorithm has the capability to 

identify dynamic landmarks using a binning algorithm. The 

algorithm is shown to have a fast constant time O(nalogna) 

computation complexity where na is the average quantity of 

points that are visible. In limiting testing the accuracy of the 

Relative Mapping Algorithm is shown to be comparable to the 

Extended Kalman Filter.   

 

I. INTRODUCTION 

The topic of this paper is the Simultaneous Localization 

and Mapping (SLAM) problem. Algorithms such as the 

Extended Kalman Filter (EKF) [1] with submapping [2] and 

FastSLAM [3][4] have been used to solve this problem. 

There has been similar work in the past with submapping 

[2][3][5] (and many others) and the use of relative location 

[6][7]. 

Most SLAM algorithms use movement or position data. 

This data can be generated by sensors (odometry) or 

estimated comparing a landmark’s sensor data to the known 

landmark’s position. This position data is then used to 

register future landmarks. That is, given a landmark obtained 

from a sensor reading, match that landmark with one already 

mapped. One potential drawback of using position data for 

landmark registration is that if there are large errors, 

landmarks will not be registered correctly. Large errors can 

occur if some landmarks have dynamic movement. A 

landmark is dynamic if its movement is not correlated to the 

movement of the robot. 

Most SLAM algorithms first transform a landmark from 

the robot’s relative space into global map coordinates for 

registration. The robot’s sensor data is originally in the 

robot’s relative space of the robot being stationary at 

position (0,0,0), and landmarks moving around the robot. 

After landmarks are segmented from the sensor data they are 

then transformed to global coordinates using current 

position. The registration continues with a nearest neighbor 

search to match the landmarks to the global map. 

The Relative Mapping Algorithm uses a different 

approach to registration, and to SLAM in general.  

Landmark data is stored in a robot’s relative space. 

Landmarks are only transformed to global coordinates in the 

last step. To register landmarks, new observations of 

landmarks in relative space are compared to the previous 

iteration of landmarks in relative space. 

If a pair of landmarks are both static then their relative 

location difference to each other is consistent. The relative 

location difference of one landmark to another can be 

averaged over many iterations to filter noise. These relative 

location differences of pairs of landmarks can be combined 

into a global map. Current position can be calculated by 

comparing the current iteration’s relative landmarks location 

to the global map. Note that current position is not used in 

any calculation and only used for display purposes.  

This may appear to be similar to iterative closest point or 

scan matching but it is not. In those algorithms, an estimate 

of the movement or current position is first calculated. This 

estimate is used to translate the landmarks to global 

coordinates. Any error in this estimate is translated into the 

location of the landmarks and thus the filtering process. By 

the original relative locations, inaccuracies introduced from 

generating current position do not affect the algorithm. 

Similarly, this algorithm does not have a practical restriction 

on the noise such as being Gaussian that the EKF has, or the 

need to model the noise distribution like FastSLAM does. As 

long as it is possible to register landmarks in the current 

iteration, using the previous iteration’s landmark relative 

locations this algorithm should work. 

Another way of understanding how this algorithm works is 

by thinking about mapping a hallway using a pencil and 

paper.  Assume a hallway consists of several doors that can 

be considered to be landmarks. As the person walks he/she 

sees the first two doors and gets a sense (average) of their 

relative location difference. Assuming the first door is at a 

starting position, say (0,0,0), the second door is plotted using 

the relative location difference from the first door. Then the 

person moves along and sees the second and a third door. 

Again the person gets a sense (average) of the relative 

difference. Since the second door is already mapped, the 

relative difference is used to map the third door from the 

second door’s mapped global position. 

The description of the Relative Mapping Algorithm in this 

paper consists of describing the key processes of this 

algorithm such as landmark registration, generating a relative 

map using a consistent basis, visibility interval group 

creation, and dynamic detection. The implementation is over 

5000 lines of C++ code and cannot be fully describes using 

pseudo code or mathematically in the space available. 

However from a theoretical basis, this algorithm is not too 

much more than an efficient implementation of the above 

hallway example. From the hallway example, it should be 

evident that the Relative Mapping Algorithm works, as it is 

analogous to that process. 
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II. THE RELATIVE MAPPING ALGORITHM USING PLANES 

The origins of the Relative Mapping Algorithm is in 

solving the SLAM problem for planes. Planes are different 

from points in that they have a midpoint, or corner points 

and a normal. The normal gives extra information that can be 

used, but the corner points (or midpoint) present a problem 

as they move as the plane expands or contracts. A plane 

expands as it is first seen and contracts as the viewpoint 

passes it by. This dynamic effect led to the need to use an 

algorithm that can identify if a corner point is static or 

dynamic and this is what led to the Relative Mapping 

Algorithm.  

The first problem that was solved was how to map planes 

relatively. Figure 1 shows six iterations of a robot’s 

movement. Notice that when the robot moves back and forth 

or side to side the ∆x and ∆y are consistent.  However when 

the robot rotates the ∆x and ∆y are no longer consistent and 

are not usable. 

To make the ∆x and ∆y consistent, a basis can be used.  

The basis is created by rotating plane 1 to be at 0°, and 

rotating plane 2 by the same amount. Figure 2 shows this 

process. By using a consistent basis, ∆x and ∆y are both 

rotation and translation invariant. They are consistent no 

matter where the robots viewpoint moves.  

Before the average relative location of a pair of planes can 

be calculated, the planes have to be registered. The Relative 

Mapping algorithm registers a plane by comparing it to its 

previous untransformed location. The untransformed 

location is the location of a plane relative to the robot’s 

viewpoint always being at location (0,0,0).  

If the robot’s viewpoint moves, the previous untransformed 

observation will be offset from the current untransformed 

observation by this movement. As long as this offset is small, 

a nearest neighbor can be used. All algorithms that do not 

have an independent odometry estimate are reliant on having 

a resolvable movement offset. 

When the current iteration’s observations are matched to 

the previous iteration’s observations they are placed into a 

storage structure. This is shown in Figure 3. Many past 

observations are stored since the Relative Mapping 

Algorithm requires the use of past iterations of planes for its 

grouping process. 

Given plane 1 and plane 2 the algorithm to solve the 

location average difference Lav (∆x, ∆y, ∆z) and average 

orientation average difference Oav over the interval where 

they are both visible is: 

 

Initial Lav and Oav to zero 

For each iteration in the given interval 

 Obtain the untransformed planes from each plane 

 Rotate both planes so plane 1 is at 0 degrees 

 Add the ∆x ∆y ∆z to Lav 

 Add the orientation difference to Oav 

Divide Lav and Oav by the size of the interval 

 

 The above algorithm demonstrates calculating the average 

relative difference all at once. It is possible have a running 
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Fig. 1. Six iterations of robot movement. The triangle is the robot’s 

viewpoint and p1 and p2 denote plane 1 and plane2. From I1 to I3 the robot 

has only translation movement so the relative ∆x and ∆y are the same.  

From I4 to I6 the robot rotates, notice that the relative ∆x and ∆y are no 

longer consistent. 
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Fig. 2. Iteration 1 and 6 from Figure 1. Both planes are rotates by the same 

amount so that plane 1 is always at 0°. This creates a consistent bases so 

that ∆x and ∆y are now rotation and translation invariant. 

  

Untransformed 

location

Untransformed 

Orientation (normal)
Iteration

1

2

3

…

N

(x1,y1)

(x2,y2)

(x3,y3)

(xn,yn)

(nx1,ny1 ,nz1)

(nx2,ny2 ,nz2)

(nx3,ny3 ,nz3)

(nxn,nyn ,nzn)

Untransformed 

location

Untransformed 

Orientation (normal)
Iteration

1

2

3

…

N

(x1,y1)

(x2,y2)

(x3,y3)

(xn,yn)

(nx1,ny1 ,nz1)

(nx2,ny2 ,nz2)

(nx3,ny3 ,nz3)

(nxn,nyn ,nzn)

Fig. 3. A data structure that stores every iteration (observation) of an 

individual plane. 
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Fig. 2. Iteration 1 and 6 from Figure 1. Both planes are rotates by the same 

amount so that plane 1 is always at 0°. This creates a consistent basis so that 

∆x and ∆y are now rotation and translation invariant. 

  



 

 

 

 

average and only add the current iteration’s relative 

difference to the running average and then divide. 

 The next problem the algorithm solves is how to identify 

dynamic corner points. Figure 4 shows a situation where two 

planes are observed but only partially as part of each plane 

falls outside the viewing frustum. For both of the two planes 

only one of the observed corner points is valid, as the other 

one is moving as the plane changes size. To identify the 

valid corner points estimated midpoints are created. These 

midpoints are generated by offsetting the plane’s size from 

each plane’s corner points.  

 Instead of only calculating one average distance, each of 

the four pairs has their average distance and standard 

deviation calculated over time. The pair with the lowest 

standard deviation is considered the valid pair of corner 

points. 

 The implementation of the plane version of the Relative 

Mapping Algorithm has considerably more functionality that described in this paper. Issues such as how to group the 

planes, interval splitting, and the motion model when only 

one partial plane is observed, are not discussed here. The 

implementation is described in more detail in [8] and pseudo 

code that requires multiple pages is available in [9]. 

The plane version of the Relative Mapping Algorithm is 

tested in a simulation. The input to the algorithm are points 

that are converted to planes using an EM algorithm [10]. The 

results are show in Figure 5,6 and 7. Figure 6 shows that 

without noise the algorithm is about to generate the map that 

contains partial planes and in one case only one partial plane 

without error. Figure 7 shows the results of a simulation at 

which the noise is set large enough so that individual points 

are not distinguishable from one iteration to the next. There 

is some error in the results but it is much less than if points 

are used as the input. A point based algorithm would not be 

able to work given the noise in Figure 7. 

The plane implementation of the Relative Mapping 

Algorithm worked however there are several issues. One is 

that it only works in 2½ dimensions.  There are also several 
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Fig. 4. Two planes (plane 1 and plane 2) are partially viewed as part of them 

falls outside the viewing frustum shown in the shaded trapezoid shape. The 

left figure shows the observed corner points in blue circles.  For both corner 

points the size of the plane is offset to generate an estimated midpoint 

shown in red circles. In the right figure the four midpoint pairs are shown. 

One of the pairs will have a low standard deviation in time (shown as a 

green arrow) and this identifies the static corner points.  The other pairs will 

have a high standard deviation. 

 

 

Fig. 5. Test bench used for the plane implementation. The top left shows the 

mapped planes compared to the actual planes. Top right show the robots 

perspective of seeing only points, Bottom left shows the results of the EM 

algorithm to form planes. Bottom right shows the full map with group 

connectivity 

 

 

Fig. 6. Results without any noise, the map is generated perfectly 

 

 
 

Fig. 7. Results with noise. The actual map is in yellow and the calculated 

map is in blue. The individual noise is set large enough so that points are no 

longer distinguishable from one iteration to the next. 



 

 

 

 

design issues. These can be fixed but there is a larger 

problem. 

The larger problem is that segmenting planes is very 

difficult and this prevents the plane implementation from 

using real data. There is very little work on planar SLAM at 

this time. However, the algorithm itself is very interesting as 

it has good features such as it is fast, and not dependant on 

current position. The most interesting feature though is that it 

has some ability to identify dynamic features. Instead of 

working on the plane implementation further, the algorithm 

is adapted to using points. 

III. THE RELATIVE MAPPING ALGORITHM USING POINTS 

The plane version of the Relative Mapping Algorithm is 

adapted to use three dimensional points and to be used with 

six degrees of freedom robot movement. The registration is 

similar to the plane version as points are registered using the 

previous iterations untransformed or relative observations 

and stored in a data structure similar to Figure 3. Points are 

combined into groups where relative maps are created. These 

groups are combined to form a global map. 

The relative map creation is similar to Figure 1 and 2 

except that points do not contains orientation information so 

it is not possible to do pair wise relative differences. Instead 

at least three points are required. For efficiency, points are 

placed into groups where every point is visible in a minimum 

interval. Three points are chosen as a basis as shown in 

Figure 7. The basis points are chosen so that they are spaced 

apart in the group. 

To create the consistent basis, the first point B0 is set to 

be at (0,0,0). The second point B1 is set to be on the 

negative x axis. The third point B2 is set to be on the xz 

plane. At the start of an iteration’s relative map calculation, a 

transform matrix is created to place the three points on their 

designated positions. Then every point in the group is 

multiplied by this transformation matrix. This allows the  

(∆x, ∆y, ∆z) of every point to B0 to be consistent regardless 

of the robots viewpoint.  The (∆x, ∆y, ∆z) is then added to a 

running average. After dividing the running average by the 

number of observations, a relative map is created. In order to 

make the relative map consistent, every point in the group 

must be visible if an iteration can be used towards the 

average relative difference. The group creation algorithm is 

designed to ensure this. 

The group creation uses a data structure that tracks every 

point that is visible in a given iteration. This data structure is 

shown in Figure 9, 10 and 11. To start the group creation 

 

Fig. 8. There are two groups, one with green connecting lines and one with 

red connecting lines. Each group has three basis points denoted by B0, B1 

and B2. These points form a plane that is consistent regardless of the robots 

viewpoint. 
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Fig. 9. The point charting structure. Each point, 1 through 8 is tracked if is 

it visible in a given iteration. This is used in the group creation process 
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Fig. 10. The point chart is sorted so that points with more observations in 

point four’s interval are in a higher position. Iterations that are in point 

four’s observation interval are shaded. 
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Fig. 11. A clustering algorithm is used to maximize the quantity of 

iterations available for the group to be calculated. The shaded blue section

shows the interval where the first four points are all visible. A minimum of 

four points must be added per group, however additional points are added 

as long as long as the area of the shaded blue square (number of points 

multiplied by the common interval) goes up.  



 

 

 

 

process, a point is chosen that has not been previously 

grouped. In the shown example this is point four. Then the 

point chart is sorted with points that have a larger interval in 

common with point four being higher in the charting 

structure. 

All groups require a minimum of four points. Three points 

that have been previously been mapped and one new one. 

Additional points are added by traversing down the point 

chart structure. The next point in the structure is evaluated 

by first combining its observation interval with the current 

group observation interval. If the new interval multiplied by 

the total number of points in the group is higher than the 

previous total, the evaluated point is added to the group. If 

not the grouping algorithm is done. 

A grouping process guarantees that each group has at least 

three points from a previous grouping that are already 

mapped. To align a group’s relative map to the global map, 

the previously points in the group that have global locations 

are compared to their relative map location using Least 

Squared Fitting [11]. The first group is unique in that none 

of its points are mapped so they are Least Squared Fitted to 

their first observations assuming that the robot was at (0,0,0) 

at the first iteration. 

There is robustness to the grouping algorithm. Notice in 

Figure 11 that point 7 which has large unobserved gaps has 

the lowest interval in common with point 4. The grouping 

algorithm can place every point into a group, but only points 

with large intervals are used as previous points in following 

groups. This means that only points with the largest intervals 

are used to propagate the map forward. Points with small 

intervals such as point 7 are not used to propagate the map 

forward and do not affect the overall accuracy of the map. 

It is possible to run the grouping process several times. 

The first grouping can be performed after a few iterations to 

place points onto the map. The second grouping can be 

performed after more iterations where there are enough 

observations to run dynamic detection. The third grouping 

can be performed after points are no longer visible, at which 

time their total observation interval is known.  

A point’s global location is calculated using its highest 

level grouping. When all the points in a lower level group 

are mapped in higher level groups, that lower level group 

can be removed. This gives a balance between creating 

groups quickly and having the groups be as accurate as 

possible as more observations are seen. 

When a point is grouped for a second time, that group’s 

relative map is recalculated from the start of the group’s 

observation interval. This iteration has long since past, but it 

is possible to be calculated since every point’s 

untransformed reading are stored in a data structure (Figure 

1). This data storage also makes it possible to identify 

dynamic points in O(nlogn) time. 

Without storing past relative observations, the 

identification of dynamic points can require updating a 

correlation matrix. Every point can be compared to every 

other point, and points with a high correlation can be 

grouped together. Since it is not known in advance which 

points are correlated, every point needs to be compared 

against every other point. This is an O(n
2
) process. 

The Relative Mapping Algorithm runs dynamic detection 

after many iterations in the second group creation. It is only 

possible to do this since the point’s have their past 

observations stored. Rather than compare every point against 

every other point, points are placed into bins. Bins are then 

compared to each other using only one or a few of the points 

present in it. Two heuristics are used: first, when half the 

points are in one bin, that bin is the static point bin, second, a 

priority queue is used for the bin comparisons. With these 

heuristics the dynamic detection can be ran in O(nlogn) time 

as shown in Figure 12. Once a point is identified as dynamic 

it is no longer used in the map but it is still tracked for 

display purposes. 

The dynamic point detection removes points with a high 

standard deviation. The group creation algorithm only uses 

points with large intervals as previous points. The 

combination of the dynamic detection and the group creation 

creates a robust point selection algorithm where poor points 

do not affect the accuracy of the map. 

What happens when a point that is already mapped being 

observed after many iterations of not being seen? The 

registration that uses the previous iterations observations will 

not be able to register this point since it has not been seen for 

a while. Perhaps current position can be used to translate the 

point to global coordinates to find a global match. This is not 

ideal since current position may have noise. Current position 

is calculated the same way as the plane implementation, by 

using the current relative observations compared to their 

global mapped locations. 

A better way is to add the point as a new point and place it 

into a new group. After several iterations, its global mapped 

location can be compared to the map to see if there is a 

match. If there is a match, the point can be merged with the 

matched point. The merging process is simple as the data 

storage in Figure 1 is copied over. This merging process 

allows the avoidance of the use of current position that may 

be noisy in any given iteration. The Relative Mapping 
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Fig. 12. The number of comparisons required versus the number of points. 

Even with 40% of the points being dynamic the number of comparisons is 

at or below the nlogn line. The binning algorithm become n2 when 

approximately 47% of the points are dynamic. 



 

 

 

 

Algorithm does not use current position or movement, 

estimated, predicted or known except for display purposes. 

The merging process can automatically closes the loop, if the 

map’s accuracy is within the point matching bound. 

There are many more details to the implementation of the 

point version of the Relative Mapping Algorithm. Only the 

major topics are covered in this paper. Additional details are 

in [12] and a full description is in [9]. The implementation 

uses approximately 5000 lines of C++ code and cannot be 

easily described in a mathematical description or pseudo 

code. Part of the reason why it is so many lines of code is 

that the implementation is optimized for run time 

performance. The algorithm is best described using its roots 

in software engineering by describing the object oriented 

classes that are used in the algorithm [12]. The 

implementation resembles an optimization algorithm such as 

Binary Space Partition [13] closer than it resembles any 

current SLAM algorithm. 

IV. RUN TIME PERFORMANCE 

The Relative Point algorithm is tested in a simulation of a 

figure eight path shown in Figure 13. The run time is shown 

in Figure 14. Figure 14 shows that the algorithm executes in 

constant time. Figure 15 shows the results of increasing the 

average quantity of visible points. The algorithm’s 

computation increases within O(nalogna) where na is the 

average quantity of visible points, as long as the data 

structure that does the point matching is chosen correctly. 

V. ACCURACY COMPARISON TO EKF 

The Relative Point algorithm is tested against a 6D no 

odometry EKF [14] obtained from the Mobile Robot Toolkit 

[15]. The point density is reduced to 25 points per 100 units 

length to allow the EKF to run. The observation noise is 

white Gaussian noise.  

Figure 16 shows the landmark error for 900 iterations.  

The two algorithms have similar accuracy. If the noise model 

used is changed to flat white noise the Relative Mapping 

Algorithm outperforms the EKF by a wide margin.  

Unfortunately at about 900 iterations, the EKF run time 

was approaching 1 second per iteration and slowing down 

further, so the testing stopped. The Relative Point algorithm 

run time was about 1 millisecond per iteration. 

Fig. 13. Simulation used for testing, a figure eight. The path has a gradual 

incline and then a decline, so the robot returns to the middle only after a full 

loop 
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Fig. 14. Run time in seconds of the algorithm as it does one loop of the 

figure 8. It starts with 0 points and ends with 7400. Notice the run time is 

constant. 
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Fig. 16. Landmark error of the EKF versus the Relative Mapping 

Algorithm. 



 

 

 

 

Unfortunately due to the lack of any motion model the 

point implementation of the Relative Mapping Algorithm 

cannot be fully tested on the Victoria Park data set. This is 

due to the data set having many intervals where the quantity 

of visible points falls below four. The point implementation 

is designed to work with vision data that should always have 

a sufficient quantity of points visible. However there are two 

intervals, from 1181 to 1642 and 4220 to 4634 that have at 

least the minimum number of points visible. 

Figure 17 shows the results of iteration 1181 to 1642. The 

Relative Mapping algorithm results are shown in the blue 

squares compared (manually stretched) to the results from 

[16]. It is not valid to do an exact comparison due to the 

short size of the interval used. However the results do show 

that the landmark locations of the Relative Mapping 

Algorithms are consistent with results from the EKF. 

The average runtime of the Relative Mapping algorithm 

on the Victoria park data set is 0.00057 seconds. All testing 

performed using an AMD 64 3400+. 

VI. RESULTS 

The Relative Point algorithm has a worst case 

computation complexity of O(nalogna), where na is the 

average quantity of points visible.  

The Relative Algorithm is able to identify dynamic points 

in O(nlogn) time. It is shown working in the figure eight 

simulation with 40% of the points being dynamic. 

The accuracy of the Relative Point algorithm is compared 

to a 6D EKF implementation that does not use odometery. 

The accuracy of the Relative Point algorithm is shown to be 

comparable to the EKF. There is also a limited comparison 

using a subset of the Victoria Park data set, which the results 

are consistent with the results using an EKF. 

VII. DISCUSSION 

The Relative Mapping Algorithm is perhaps more similar 

to optimization algorithms such as Binary Space Partition 

than it is to other SLAM algorithms. It has very beneficial 

properties in terms of computation complexity and speed, 

and the ability to identify dynamic points. Its accuracy has 

been shown to be consistent with the EKF in very limited 

testing. It can be said that given dynamic noise the Relative 

Mapping Algorithm will continue to work whereas 

algorithms without this capability will not. However it is too 

early and the testing is too limited to make a general 

statement about its accuracy. 

Perhaps the most important result of this work is that it 

proves that SLAM can be done without making use of any 

movement or location data, and that SLAM can be solved 

using Software Engineering optimization techniques. 
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Fig 17. Landmark positions from the EKF in yellow dots and from the 

Relative Mapping Algorithm in blue squares. 

 


