

Jay Kraut

Abstract— This paper introduces a Relative Mapping

Algorithm. This algorithm presents a new way of looking at the

SLAM problem that does not use Probability, Iterative Closest

Point, or Scan Matching techniques. A map of landmarks is

generated by using the average relative location difference

between landmarks. This means the algorithm does not use any

known, estimated or predicted movement or position data. In

addition, the Relative Mapping Algorithm has the capability to

identify dynamic landmarks using a binning algorithm. The

algorithm is shown to have a fast constant time O(nalogna)

computation complexity where na is the average quantity of

points that are visible. In limiting testing the accuracy of the

Relative Mapping Algorithm is shown to be comparable to the

Extended Kalman Filter.

I. INTRODUCTION

The topic of this paper is the Simultaneous Localization

and Mapping (SLAM) problem. Algorithms such as the

Extended Kalman Filter (EKF) [1] with submapping [2] and

FastSLAM [3][4] have been used to solve this problem.

There has been similar work in the past with submapping

[2][3][5] (and many others) and the use of relative location

[6][7].

Most SLAM algorithms use movement or position data.

This data can be generated by sensors (odometry) or

estimated comparing a landmark’s sensor data to the known

landmark’s position. This position data is then used to

register future landmarks. That is, given a landmark obtained

from a sensor reading, match that landmark with one already

mapped. One potential drawback of using position data for

landmark registration is that if there are large errors,

landmarks will not be registered correctly. Large errors can

occur if some landmarks have dynamic movement. A

landmark is dynamic if its movement is not correlated to the

movement of the robot.

Most SLAM algorithms first transform a landmark from

the robot’s relative space into global map coordinates for

registration. The robot’s sensor data is originally in the

robot’s relative space of the robot being stationary at

position (0,0,0), and landmarks moving around the robot.

After landmarks are segmented from the sensor data they are

then transformed to global coordinates using current

position. The registration continues with a nearest neighbor

search to match the landmarks to the global map.

The Relative Mapping Algorithm uses a different

approach to registration, and to SLAM in general.

Landmark data is stored in a robot’s relative space.

Landmarks are only transformed to global coordinates in the

last step. To register landmarks, new observations of

landmarks in relative space are compared to the previous

iteration of landmarks in relative space.

If a pair of landmarks are both static then their relative

location difference to each other is consistent. The relative

location difference of one landmark to another can be

averaged over many iterations to filter noise. These relative

location differences of pairs of landmarks can be combined

into a global map. Current position can be calculated by

comparing the current iteration’s relative landmarks location

to the global map. Note that current position is not used in

any calculation and only used for display purposes.

This may appear to be similar to iterative closest point or

scan matching but it is not. In those algorithms, an estimate

of the movement or current position is first calculated. This

estimate is used to translate the landmarks to global

coordinates. Any error in this estimate is translated into the

location of the landmarks and thus the filtering process. By

the original relative locations, inaccuracies introduced from

generating current position do not affect the algorithm.

Similarly, this algorithm does not have a practical restriction

on the noise such as being Gaussian that the EKF has, or the

need to model the noise distribution like FastSLAM does. As

long as it is possible to register landmarks in the current

iteration, using the previous iteration’s landmark relative

locations this algorithm should work.

Another way of understanding how this algorithm works is

by thinking about mapping a hallway using a pencil and

paper. Assume a hallway consists of several doors that can

be considered to be landmarks. As the person walks he/she

sees the first two doors and gets a sense (average) of their

relative location difference. Assuming the first door is at a

starting position, say (0,0,0), the second door is plotted using

the relative location difference from the first door. Then the

person moves along and sees the second and a third door.

Again the person gets a sense (average) of the relative

difference. Since the second door is already mapped, the

relative difference is used to map the third door from the

second door’s mapped global position.

The description of the Relative Mapping Algorithm in this

paper consists of describing the key processes of this

algorithm such as landmark registration, generating a relative

map using a consistent basis, visibility interval group

creation, and dynamic detection. The implementation is over

5000 lines of C++ code and cannot be fully describes using

pseudo code or mathematically in the space available.

However from a theoretical basis, this algorithm is not too

much more than an efficient implementation of the above

hallway example. From the hallway example, it should be

evident that the Relative Mapping Algorithm works, as it is

analogous to that process.

A Relative Mapping Algorithm

II. THE RELATIVE MAPPING ALGORITHM USING PLANES

The origins of the Relative Mapping Algorithm is in

solving the SLAM problem for planes. Planes are different

from points in that they have a midpoint, or corner points

and a normal. The normal gives extra information that can be

used, but the corner points (or midpoint) present a problem

as they move as the plane expands or contracts. A plane

expands as it is first seen and contracts as the viewpoint

passes it by. This dynamic effect led to the need to use an

algorithm that can identify if a corner point is static or

dynamic and this is what led to the Relative Mapping

Algorithm.

The first problem that was solved was how to map planes

relatively. Figure 1 shows six iterations of a robot’s

movement. Notice that when the robot moves back and forth

or side to side the ∆x and ∆y are consistent. However when

the robot rotates the ∆x and ∆y are no longer consistent and

are not usable.

To make the ∆x and ∆y consistent, a basis can be used.

The basis is created by rotating plane 1 to be at 0°, and

rotating plane 2 by the same amount. Figure 2 shows this

process. By using a consistent basis, ∆x and ∆y are both

rotation and translation invariant. They are consistent no

matter where the robots viewpoint moves.

Before the average relative location of a pair of planes can

be calculated, the planes have to be registered. The Relative

Mapping algorithm registers a plane by comparing it to its

previous untransformed location. The untransformed

location is the location of a plane relative to the robot’s

viewpoint always being at location (0,0,0).

If the robot’s viewpoint moves, the previous untransformed

observation will be offset from the current untransformed

observation by this movement. As long as this offset is small,

a nearest neighbor can be used. All algorithms that do not

have an independent odometry estimate are reliant on having

a resolvable movement offset.

When the current iteration’s observations are matched to

the previous iteration’s observations they are placed into a

storage structure. This is shown in Figure 3. Many past

observations are stored since the Relative Mapping

Algorithm requires the use of past iterations of planes for its

grouping process.

Given plane 1 and plane 2 the algorithm to solve the

location average difference Lav (∆x, ∆y, ∆z) and average

orientation average difference Oav over the interval where

they are both visible is:

Initial Lav and Oav to zero

For each iteration in the given interval

 Obtain the untransformed planes from each plane

 Rotate both planes so plane 1 is at 0 degrees

 Add the ∆x ∆y ∆z to Lav

 Add the orientation difference to Oav

Divide Lav and Oav by the size of the interval

 The above algorithm demonstrates calculating the average

relative difference all at once. It is possible have a running

p1

p2

I1

∆y

∆x

I2

p1

p2

∆y

∆x p1

p2

∆y

∆x

p1

p2

∆y

∆x p1

p2

∆y

∆x p1

p2

∆y

∆x

I3

I4 I5 I6

p1

p2

I1

∆y

∆x

I2

p1

p2

∆y

∆x p1

p2

∆y

∆x

p1

p2

∆y

∆x p1

p2

∆y

∆x p1

p2

∆y

∆x

I3

I4 I5 I6

Fig. 1. Six iterations of robot movement. The triangle is the robot’s

viewpoint and p1 and p2 denote plane 1 and plane2. From I1 to I3 the robot

has only translation movement so the relative ∆x and ∆y are the same.

From I4 to I6 the robot rotates, notice that the relative ∆x and ∆y are no

longer consistent.

p1

p2

I1

∆y

∆x

I1p1

p2

∆y

∆x

Rotate both

planes by -90º

Rotate both

planes by -60º

p1

p2

∆y

∆x

p1

∆y

∆x

I6I6

p2

p1

p2

I1

∆y

∆x

I1p1

p2

∆y

∆x

Rotate both

planes by -90º

Rotate both

planes by -60º

p1

p2

∆y

∆x

p1

∆y

∆x

I6I6

p2

Fig. 2. Iteration 1 and 6 from Figure 1. Both planes are rotates by the same

amount so that plane 1 is always at 0°. This creates a consistent bases so

that ∆x and ∆y are now rotation and translation invariant.

Untransformed

location

Untransformed

Orientation (normal)
Iteration

1

2

3

…

N

(x1,y1)

(x2,y2)

(x3,y3)

(xn,yn)

(nx1,ny1 ,nz1)

(nx2,ny2 ,nz2)

(nx3,ny3 ,nz3)

(nxn,nyn ,nzn)

Untransformed

location

Untransformed

Orientation (normal)
Iteration

1

2

3

…

N

(x1,y1)

(x2,y2)

(x3,y3)

(xn,yn)

(nx1,ny1 ,nz1)

(nx2,ny2 ,nz2)

(nx3,ny3 ,nz3)

(nxn,nyn ,nzn)

Fig. 3. A data structure that stores every iteration (observation) of an

individual plane.

p1

p2

I1

∆y

∆x

I1p1

p2

∆y

∆x

Rotate both

planes by -90º

Rotate both

planes by -60º

p1

p2

∆y

∆x

p1

∆y

∆x

I6I6

p2

p1

p2

I1

∆y

∆x

I1p1

p2

∆y

∆x

Rotate both

planes by -90º

Rotate both

planes by -60º

p1

p2

∆y

∆x

p1

∆y

∆x

I6I6

p2

Fig. 2. Iteration 1 and 6 from Figure 1. Both planes are rotates by the same

amount so that plane 1 is always at 0°. This creates a consistent basis so that

∆x and ∆y are now rotation and translation invariant.

average and only add the current iteration’s relative

difference to the running average and then divide.

 The next problem the algorithm solves is how to identify

dynamic corner points. Figure 4 shows a situation where two

planes are observed but only partially as part of each plane

falls outside the viewing frustum. For both of the two planes

only one of the observed corner points is valid, as the other

one is moving as the plane changes size. To identify the

valid corner points estimated midpoints are created. These

midpoints are generated by offsetting the plane’s size from

each plane’s corner points.

 Instead of only calculating one average distance, each of

the four pairs has their average distance and standard

deviation calculated over time. The pair with the lowest

standard deviation is considered the valid pair of corner

points.

 The implementation of the plane version of the Relative

Mapping Algorithm has considerably more functionality that described in this paper. Issues such as how to group the

planes, interval splitting, and the motion model when only

one partial plane is observed, are not discussed here. The

implementation is described in more detail in [8] and pseudo

code that requires multiple pages is available in [9].

The plane version of the Relative Mapping Algorithm is

tested in a simulation. The input to the algorithm are points

that are converted to planes using an EM algorithm [10]. The

results are show in Figure 5,6 and 7. Figure 6 shows that

without noise the algorithm is about to generate the map that

contains partial planes and in one case only one partial plane

without error. Figure 7 shows the results of a simulation at

which the noise is set large enough so that individual points

are not distinguishable from one iteration to the next. There

is some error in the results but it is much less than if points

are used as the input. A point based algorithm would not be

able to work given the noise in Figure 7.

The plane implementation of the Relative Mapping

Algorithm worked however there are several issues. One is

that it only works in 2½ dimensions. There are also several

Plane 1

Plane 2

Plane 1

Plane 2

Plane 1

Plane 2

Plane 1

Plane 2

Fig. 4. Two planes (plane 1 and plane 2) are partially viewed as part of them

falls outside the viewing frustum shown in the shaded trapezoid shape. The

left figure shows the observed corner points in blue circles. For both corner

points the size of the plane is offset to generate an estimated midpoint

shown in red circles. In the right figure the four midpoint pairs are shown.

One of the pairs will have a low standard deviation in time (shown as a

green arrow) and this identifies the static corner points. The other pairs will

have a high standard deviation.

Fig. 5. Test bench used for the plane implementation. The top left shows the

mapped planes compared to the actual planes. Top right show the robots

perspective of seeing only points, Bottom left shows the results of the EM

algorithm to form planes. Bottom right shows the full map with group

connectivity

Fig. 6. Results without any noise, the map is generated perfectly

Fig. 7. Results with noise. The actual map is in yellow and the calculated

map is in blue. The individual noise is set large enough so that points are no

longer distinguishable from one iteration to the next.

design issues. These can be fixed but there is a larger

problem.

The larger problem is that segmenting planes is very

difficult and this prevents the plane implementation from

using real data. There is very little work on planar SLAM at

this time. However, the algorithm itself is very interesting as

it has good features such as it is fast, and not dependant on

current position. The most interesting feature though is that it

has some ability to identify dynamic features. Instead of

working on the plane implementation further, the algorithm

is adapted to using points.

III. THE RELATIVE MAPPING ALGORITHM USING POINTS

The plane version of the Relative Mapping Algorithm is

adapted to use three dimensional points and to be used with

six degrees of freedom robot movement. The registration is

similar to the plane version as points are registered using the

previous iterations untransformed or relative observations

and stored in a data structure similar to Figure 3. Points are

combined into groups where relative maps are created. These

groups are combined to form a global map.

The relative map creation is similar to Figure 1 and 2

except that points do not contains orientation information so

it is not possible to do pair wise relative differences. Instead

at least three points are required. For efficiency, points are

placed into groups where every point is visible in a minimum

interval. Three points are chosen as a basis as shown in

Figure 7. The basis points are chosen so that they are spaced

apart in the group.

To create the consistent basis, the first point B0 is set to

be at (0,0,0). The second point B1 is set to be on the

negative x axis. The third point B2 is set to be on the xz

plane. At the start of an iteration’s relative map calculation, a

transform matrix is created to place the three points on their

designated positions. Then every point in the group is

multiplied by this transformation matrix. This allows the

(∆x, ∆y, ∆z) of every point to B0 to be consistent regardless

of the robots viewpoint. The (∆x, ∆y, ∆z) is then added to a

running average. After dividing the running average by the

number of observations, a relative map is created. In order to

make the relative map consistent, every point in the group

must be visible if an iteration can be used towards the

average relative difference. The group creation algorithm is

designed to ensure this.

The group creation uses a data structure that tracks every

point that is visible in a given iteration. This data structure is

shown in Figure 9, 10 and 11. To start the group creation

Fig. 8. There are two groups, one with green connecting lines and one with

red connecting lines. Each group has three basis points denoted by B0, B1

and B2. These points form a plane that is consistent regardless of the robots

viewpoint.

Point 1

Point 3

Point 2

Point 4

Point 5

Point 6

Point 7

Point 8

Time
0 10 20 30

Point 1

Point 3

Point 2

Point 4

Point 5

Point 6

Point 7

Point 8

Time
0 10 20 30

Fig. 9. The point charting structure. Each point, 1 through 8 is tracked if is

it visible in a given iteration. This is used in the group creation process

Point 1

Point 3

Point 2

Point 4

Point 5

Point 6

Point 7

Point 8

Time
0 10 20 30

Point 1

Point 3

Point 2

Point 4

Point 5

Point 6

Point 7

Point 8

Time
0 10 20 30

Point 1

Point 3

Point 2

Point 4

Point 5

Point 6

Point 7

Point 8

Time
0 10 20 30

Fig. 10. The point chart is sorted so that points with more observations in

point four’s interval are in a higher position. Iterations that are in point

four’s observation interval are shaded.

Point 1

Point 3

Point 2

Point 4

Point 5

Point 6

Point 7

Point 8

Time
0 10 20 30

Point 1

Point 3

Point 2

Point 4

Point 5

Point 6

Point 7

Point 8

Time
0 10 20 30

Point 1

Point 3

Point 2

Point 4

Point 5

Point 6

Point 7

Point 8

Time
0 10 20 30

Point 1

Point 3

Point 2

Point 4

Point 5

Point 6

Point 7

Point 8

Time
0 10 20 30

Fig. 11. A clustering algorithm is used to maximize the quantity of

iterations available for the group to be calculated. The shaded blue section

shows the interval where the first four points are all visible. A minimum of

four points must be added per group, however additional points are added

as long as long as the area of the shaded blue square (number of points

multiplied by the common interval) goes up.

process, a point is chosen that has not been previously

grouped. In the shown example this is point four. Then the

point chart is sorted with points that have a larger interval in

common with point four being higher in the charting

structure.

All groups require a minimum of four points. Three points

that have been previously been mapped and one new one.

Additional points are added by traversing down the point

chart structure. The next point in the structure is evaluated

by first combining its observation interval with the current

group observation interval. If the new interval multiplied by

the total number of points in the group is higher than the

previous total, the evaluated point is added to the group. If

not the grouping algorithm is done.

A grouping process guarantees that each group has at least

three points from a previous grouping that are already

mapped. To align a group’s relative map to the global map,

the previously points in the group that have global locations

are compared to their relative map location using Least

Squared Fitting [11]. The first group is unique in that none

of its points are mapped so they are Least Squared Fitted to

their first observations assuming that the robot was at (0,0,0)

at the first iteration.

There is robustness to the grouping algorithm. Notice in

Figure 11 that point 7 which has large unobserved gaps has

the lowest interval in common with point 4. The grouping

algorithm can place every point into a group, but only points

with large intervals are used as previous points in following

groups. This means that only points with the largest intervals

are used to propagate the map forward. Points with small

intervals such as point 7 are not used to propagate the map

forward and do not affect the overall accuracy of the map.

It is possible to run the grouping process several times.

The first grouping can be performed after a few iterations to

place points onto the map. The second grouping can be

performed after more iterations where there are enough

observations to run dynamic detection. The third grouping

can be performed after points are no longer visible, at which

time their total observation interval is known.

A point’s global location is calculated using its highest

level grouping. When all the points in a lower level group

are mapped in higher level groups, that lower level group

can be removed. This gives a balance between creating

groups quickly and having the groups be as accurate as

possible as more observations are seen.

When a point is grouped for a second time, that group’s

relative map is recalculated from the start of the group’s

observation interval. This iteration has long since past, but it

is possible to be calculated since every point’s

untransformed reading are stored in a data structure (Figure

1). This data storage also makes it possible to identify

dynamic points in O(nlogn) time.

Without storing past relative observations, the

identification of dynamic points can require updating a

correlation matrix. Every point can be compared to every

other point, and points with a high correlation can be

grouped together. Since it is not known in advance which

points are correlated, every point needs to be compared

against every other point. This is an O(n
2
) process.

The Relative Mapping Algorithm runs dynamic detection

after many iterations in the second group creation. It is only

possible to do this since the point’s have their past

observations stored. Rather than compare every point against

every other point, points are placed into bins. Bins are then

compared to each other using only one or a few of the points

present in it. Two heuristics are used: first, when half the

points are in one bin, that bin is the static point bin, second, a

priority queue is used for the bin comparisons. With these

heuristics the dynamic detection can be ran in O(nlogn) time

as shown in Figure 12. Once a point is identified as dynamic

it is no longer used in the map but it is still tracked for

display purposes.

The dynamic point detection removes points with a high

standard deviation. The group creation algorithm only uses

points with large intervals as previous points. The

combination of the dynamic detection and the group creation

creates a robust point selection algorithm where poor points

do not affect the accuracy of the map.

What happens when a point that is already mapped being

observed after many iterations of not being seen? The

registration that uses the previous iterations observations will

not be able to register this point since it has not been seen for

a while. Perhaps current position can be used to translate the

point to global coordinates to find a global match. This is not

ideal since current position may have noise. Current position

is calculated the same way as the plane implementation, by

using the current relative observations compared to their

global mapped locations.

A better way is to add the point as a new point and place it

into a new group. After several iterations, its global mapped

location can be compared to the map to see if there is a

match. If there is a match, the point can be merged with the

matched point. The merging process is simple as the data

storage in Figure 1 is copied over. This merging process

allows the avoidance of the use of current position that may

be noisy in any given iteration. The Relative Mapping

Evaluation of binning with priority queue

0

100

200

300

400

500

600

700

800

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number of Points

C
o
m

p
a
ri

s
o
n
s

0%

10%

20%

30%

40%

nlogn

Fig. 12. The number of comparisons required versus the number of points.

Even with 40% of the points being dynamic the number of comparisons is

at or below the nlogn line. The binning algorithm become n2 when

approximately 47% of the points are dynamic.

Algorithm does not use current position or movement,

estimated, predicted or known except for display purposes.

The merging process can automatically closes the loop, if the

map’s accuracy is within the point matching bound.

There are many more details to the implementation of the

point version of the Relative Mapping Algorithm. Only the

major topics are covered in this paper. Additional details are

in [12] and a full description is in [9]. The implementation

uses approximately 5000 lines of C++ code and cannot be

easily described in a mathematical description or pseudo

code. Part of the reason why it is so many lines of code is

that the implementation is optimized for run time

performance. The algorithm is best described using its roots

in software engineering by describing the object oriented

classes that are used in the algorithm [12]. The

implementation resembles an optimization algorithm such as

Binary Space Partition [13] closer than it resembles any

current SLAM algorithm.

IV. RUN TIME PERFORMANCE

The Relative Point algorithm is tested in a simulation of a

figure eight path shown in Figure 13. The run time is shown

in Figure 14. Figure 14 shows that the algorithm executes in

constant time. Figure 15 shows the results of increasing the

average quantity of visible points. The algorithm’s

computation increases within O(nalogna) where na is the

average quantity of visible points, as long as the data

structure that does the point matching is chosen correctly.

V. ACCURACY COMPARISON TO EKF

The Relative Point algorithm is tested against a 6D no

odometry EKF [14] obtained from the Mobile Robot Toolkit

[15]. The point density is reduced to 25 points per 100 units

length to allow the EKF to run. The observation noise is

white Gaussian noise.

Figure 16 shows the landmark error for 900 iterations.

The two algorithms have similar accuracy. If the noise model

used is changed to flat white noise the Relative Mapping

Algorithm outperforms the EKF by a wide margin.

Unfortunately at about 900 iterations, the EKF run time

was approaching 1 second per iteration and slowing down

further, so the testing stopped. The Relative Point algorithm

run time was about 1 millisecond per iteration.

Fig. 13. Simulation used for testing, a figure eight. The path has a gradual

incline and then a decline, so the robot returns to the middle only after a full

loop

Execution time

0

0.001

0.002

0.003

0.004

0.005

0.006

1

5
0
2

1
0
0
3

1
5
0
4

2
0
0
5

2
5
0
6

3
0
0
7

3
5
0
8

4
0
0
9

4
5
1
0

5
0
1
1

5
5
1
2

6
0
1
3

6
5
1
4

Iteration

T
im

e
 (
s
e
c
o
n
d
s
)

Execution time ma

Linear (Execution time ma)

Fig. 14. Run time in seconds of the algorithm as it does one loop of the

figure 8. It starts with 0 points and ends with 7400. Notice the run time is

constant.

Quadtree with Octtree replacement at 400

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

100 150 200 250 300 350 400 400 450 500 550

Point density

T
im

e
 (
s
e
c
o
n
d
s
)

Quad combo with Oct

nlogn

n

Fig. 15. Run time as the average quantity of visible points goes up. A

quadtree is used for the point matching up to the 400 point density where it

is replaced by an octtree. A kd-tree was also tested but was found to be

slower.

Fig. 16. Landmark error of the EKF versus the Relative Mapping

Algorithm.

Unfortunately due to the lack of any motion model the

point implementation of the Relative Mapping Algorithm

cannot be fully tested on the Victoria Park data set. This is

due to the data set having many intervals where the quantity

of visible points falls below four. The point implementation

is designed to work with vision data that should always have

a sufficient quantity of points visible. However there are two

intervals, from 1181 to 1642 and 4220 to 4634 that have at

least the minimum number of points visible.

Figure 17 shows the results of iteration 1181 to 1642. The

Relative Mapping algorithm results are shown in the blue

squares compared (manually stretched) to the results from

[16]. It is not valid to do an exact comparison due to the

short size of the interval used. However the results do show

that the landmark locations of the Relative Mapping

Algorithms are consistent with results from the EKF.

The average runtime of the Relative Mapping algorithm

on the Victoria park data set is 0.00057 seconds. All testing

performed using an AMD 64 3400+.

VI. RESULTS

The Relative Point algorithm has a worst case

computation complexity of O(nalogna), where na is the

average quantity of points visible.

The Relative Algorithm is able to identify dynamic points

in O(nlogn) time. It is shown working in the figure eight

simulation with 40% of the points being dynamic.

The accuracy of the Relative Point algorithm is compared

to a 6D EKF implementation that does not use odometery.

The accuracy of the Relative Point algorithm is shown to be

comparable to the EKF. There is also a limited comparison

using a subset of the Victoria Park data set, which the results

are consistent with the results using an EKF.

VII. DISCUSSION

The Relative Mapping Algorithm is perhaps more similar

to optimization algorithms such as Binary Space Partition

than it is to other SLAM algorithms. It has very beneficial

properties in terms of computation complexity and speed,

and the ability to identify dynamic points. Its accuracy has

been shown to be consistent with the EKF in very limited

testing. It can be said that given dynamic noise the Relative

Mapping Algorithm will continue to work whereas

algorithms without this capability will not. However it is too

early and the testing is too limited to make a general

statement about its accuracy.

Perhaps the most important result of this work is that it

proves that SLAM can be done without making use of any

movement or location data, and that SLAM can be solved

using Software Engineering optimization techniques.

REFERENCES

[1] M. Dissanayake, P. Newman, S. Clear, H. Durrant-Whyte, M. Csorba,

“A Solution to the simultaneous localization and map building

(SLAM) problem,” IEEE Transactions on Robotics and Automation

V 1713 Jun 2001

[2] L. M. Paz, J. D. Tardos and J. Neira, “Divide and Conquer: EKF

SLAM in O(n),” IEEE Trasnactions on Robotics. Volume 24, No. 5,

October 2008.

[3] S. Thrun, W. Burgard, D. Fox. “Probabilistic Robotics,” MIT PRESS,

Cambridge, MA, 2005.

[4] T.D. Barfoot, “Online visual motion estimation using FastSLAM with

SIFT features,” IROS 2005

[5] B. Lisien, D. Morales, D. Silver, G. Kantor, I. Rekleitis, H. Choset,

“Hierarchical Simultaneous Localization and Mapping,” Proceedings

of the 2003 IEEERSJ Intl. Conference on Intellgent Robots and

System Las Vegas, Nevada, October 2003.

[6] M. Csorba, “Simultaneous Localisation and Map Building,” PhD

Thesis, University of Oxford, 1997.

[7] P. Newman, “On the Structure and Solution of the Simultaneous

Localisation and Map Building Problem,” PhD thesis, University of

Sydney, 2000

[8] J. Kraut, “A Relative Plane Algorithm”, Technical Paper,

www.jkrobots.com, 2011

[9] J. Kraut, “The Development of a Relative Point and a Relative Plane

SLAM Algorithms”, PhD thesis, University of Manitoba, 2011

[10] S. Thrun, C.Martin, Y.Liu, D. Hahnel, R. Emery-Montemerlo, D.

Chakrabarti, and W. Burgand. A real-time expectation maximization

algorithm for acquiring multi-planar maps of indoor environments

with mobile robots. IEEE Transactions on Robotics, 20(3):433-443,

2004.

[11] K. S. Arun, T.S Huang, and S. D. Blostein, “Least square Fitting of

two 3D point sets,” IEEE Transaction on Pattern Analysis and

Machine Intelligence, 9(5) 1987 pp. 698-700

[12] J. Kraut, “A Relative Point Algorithm”, Technical Paper,

www.jkrobots.com, 2011

[13] Binary Space Partitions,

http://en.wikipedia.org/wiki/Binary_space_partitioning, 2011

[14] J. L. Blanco, “Derivation and Implementation of a Full 6D EKF-based

Solution to Bearing Range SLAM,” Technical Report, Perception

and Mobile Robots Research Group, University of Malage, Spain,

2008

[15] Mobile Robot Toolkit 6D-SLAM, http://www.mrpt.org/6D-SLAM,

retrieved January, 2011

[16] P. Rodriguez, http://webdiis.unizar.es/~ppinies/home.html, 2011

.

Fig 17. Landmark positions from the EKF in yellow dots and from the

Relative Mapping Algorithm in blue squares.

