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Abstract— This paper introduces a Relative Mapping
Algorithm. This algorithm presents a new way of looking at the
SLAM problem that does not use Probability, Iterative Closest
Point, or Scan Matching techniques. A map of landmarks is
generated by using the average relative location difference
between landmarks. This means the algorithm does not use any
known, estimated or predicted movement or position data. In
addition, the Relative Mapping Algorithm has the capability to
identify dynamic landmarks using a binning algorithm. The
algorithm is shown to have a fast constant time O(n,logn,)
computation complexity where n, is the average quantity of
points that are visible. In limiting testing the accuracy of the
Relative Mapping Algorithm is shown to be comparable to the
Extended Kalman Filter.

I. INTRODUCTION

The topic of this paper is the Simultaneous Localization
and Mapping (SLAM) problem. Algorithms such as the
Extended Kalman Filter (EKF) [1] with submapping [2] and
FastSLAM [3][4] have been used to solve this problem.
There has been similar work in the past with submapping
[21[3][5] (and many others) and the use of relative location
[6]1[7].

Most SLAM algorithms use movement or position data.
This data can be generated by sensors (odometry) or
estimated comparing a landmark’s sensor data to the known
landmark’s position. This position data is then used to
register future landmarks. That is, given a landmark obtained
from a sensor reading, match that landmark with one already
mapped. One potential drawback of using position data for
landmark registration is that if there are large errors,
landmarks will not be registered correctly. Large errors can
occur if some landmarks have dynamic movement. A
landmark is dynamic if its movement is not correlated to the
movement of the robot.

Most SLAM algorithms first transform a landmark from
the robot’s relative space into global map coordinates for
registration. The robot’s sensor data is originally in the
robot’s relative space of the robot being stationary at
position (0,0,0), and landmarks moving around the robot.
After landmarks are segmented from the sensor data they are
then transformed to global coordinates using current
position. The registration continues with a nearest neighbor
search to match the landmarks to the global map.

The Relative Mapping Algorithm uses a different
approach to registration, and to SLAM in general.
Landmark data is stored in a robot’s relative space.
Landmarks are only transformed to global coordinates in the
last step. To register landmarks, new observations of

landmarks in relative space are compared to the previous
iteration of landmarks in relative space.

If a pair of landmarks are both static then their relative
location difference to each other is consistent. The relative
location difference of one landmark to another can be
averaged over many iterations to filter noise. These relative
location differences of pairs of landmarks can be combined
into a global map. Current position can be calculated by
comparing the current iteration’s relative landmarks location
to the global map. Note that current position is not used in
any calculation and only used for display purposes.

This may appear to be similar to iterative closest point or
scan matching but it is not. In those algorithms, an estimate
of the movement or current position is first calculated. This
estimate is used to translate the landmarks to global
coordinates. Any error in this estimate is translated into the
location of the landmarks and thus the filtering process. By
the original relative locations, inaccuracies introduced from
generating current position do not affect the algorithm.
Similarly, this algorithm does not have a practical restriction
on the noise such as being Gaussian that the EKF has, or the
need to model the noise distribution like FastSLAM does. As
long as it is possible to register landmarks in the current
iteration, using the previous iteration’s landmark relative
locations this algorithm should work.

Another way of understanding how this algorithm works is
by thinking about mapping a hallway using a pencil and
paper. Assume a hallway consists of several doors that can
be considered to be landmarks. As the person walks he/she
sees the first two doors and gets a sense (average) of their
relative location difference. Assuming the first door is at a
starting position, say (0,0,0), the second door is plotted using
the relative location difference from the first door. Then the
person moves along and sees the second and a third door.
Again the person gets a sense (average) of the relative
difference. Since the second door is already mapped, the
relative difference is used to map the third door from the
second door’s mapped global position.

The description of the Relative Mapping Algorithm in this
paper consists of describing the key processes of this
algorithm such as landmark registration, generating a relative
map using a consistent basis, visibility interval group
creation, and dynamic detection. The implementation is over
5000 lines of C++ code and cannot be fully describes using
pseudo code or mathematically in the space available.
However from a theoretical basis, this algorithm is not too
much more than an efficient implementation of the above
hallway example. From the hallway example, it should be
evident that the Relative Mapping Algorithm works, as it is
analogous to that process.
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Fig. 1. Six iterations of robot movement. The triangle is the robot’s
viewpoint and pl and p2 denote plane 1 and plane2. From I1 to I3 the robot
has only translation movement so the relative Ax and Ay are the same.
From 14 to 16 the robot rotates, notice that the relative Ax and Ay are no
longer consistent.
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II. THE RELATIVE MAPPING ALGORITHM USING PLANES

The origins of the Relative Mapping Algorithm is in
solving the SLAM problem for planes. Planes are different
from points in that they have a midpoint, or corner points
and a normal. The normal gives extra information that can be
used, but the corner points (or midpoint) present a problem
as they move as the plane expands or contracts. A plane
expands as it is first seen and contracts as the viewpoint
passes it by. This dynamic effect led to the need to use an
algorithm that can identify if a corner point is static or
dynamic and this is what led to the Relative Mapping
Algorithm.

The first problem that was solved was how to map planes
relatively. Figure 1 shows six iterations of a robot’s
movement. Notice that when the robot moves back and forth
or side to side the Ax and Ay are consistent. However when
the robot rotates the Ax and Ay are no longer consistent and
are not usable.

lteration Untrgnsformed Ugtransformed
location Orientation (normal)
1 (xpy) (nx,,ny, ,nz,)
5 (X,,¥,) (nx,,ny, ,nz,)
3 (%3,y3) (nx4,nys; ,nz5)
N (XY, (nx_,ny,_ ,nz )

Fig. 3. A data structure that stores every iteration (observation) of an
individual plane.
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Fig. 2. Iteration 1 and 6 from Figure 1. Both planes are rotates by the same
amount so that plane 1 is always at 0°. This creates a consistent basis so that
Ax and Ay are now rotation and translation invariant.

To make the Ax and Ay consistent, a basis can be used.
The basis is created by rotating plane 1 to be at 0°, and
rotating plane 2 by the same amount. Figure 2 shows this
process. By using a consistent basis, Ax and Ay are both
rotation and translation invariant. They are consistent no
matter where the robots viewpoint moves.

Before the average relative location of a pair of planes can
be calculated, the planes have to be registered. The Relative
Mapping algorithm registers a plane by comparing it to its
previous untransformed location. The untransformed
location is the location of a plane relative to the robot’s
viewpoint always being at location (0,0,0).

If the robot’s viewpoint moves, the previous untransformed
observation will be offset from the current untransformed
observation by this movement. As long as this offset is small,
a nearest neighbor can be used. All algorithms that do not
have an independent odometry estimate are reliant on having
a resolvable movement offset.

When the current iteration’s observations are matched to
the previous iteration’s observations they are placed into a
storage structure. This is shown in Figure 3. Many past
observations are stored since the Relative Mapping
Algorithm requires the use of past iterations of planes for its
grouping process.

Given plane 1 and plane 2 the algorithm to solve the
location average difference L,, (Ax, Ay, Az) and average
orientation average difference O,, over the interval where
they are both visible is:

Initial L, 4nq O,y to zero

For each iteration in the given interval
Obtain the untransformed planes from each plane
Rotate both planes so plane 1 is at 0 degrees
Add the Ax Ay Az to L,,
Add the orientation difference to O,,

Divide L,y ang Oay by the size of the interval

The above algorithm demonstrates calculating the average
relative difference all at once. It is possible have a running



Fig. 4. Two planes (plane 1 and plane 2) are partially viewed as part of them
falls outside the viewing frustum shown in the shaded trapezoid shape. The
left figure shows the observed corner points in blue circles. For both corner
points the size of the plane is offset to generate an estimated midpoint
shown in red circles. In the right figure the four midpoint pairs are shown.
One of the pairs will have a low standard deviation in time (shown as a
green arrow) and this identifies the static corner points. The other pairs will
have a high standard deviation.

average and only add the current iteration’s relative
difference to the running average and then divide.

The next problem the algorithm solves is how to identify
dynamic corner points. Figure 4 shows a situation where two
planes are observed but only partially as part of each plane
falls outside the viewing frustum. For both of the two planes
only one of the observed corner points is valid, as the other
one is moving as the plane changes size. To identify the
valid corner points estimated midpoints are created. These
midpoints are generated by offsetting the plane’s size from
each plane’s corner points.

Instead of only calculating one average distance, each of
the four pairs has their average distance and standard
deviation calculated over time. The pair with the lowest
standard deviation is considered the valid pair of corner
points.

The implementation of the plane version of the Relative
Mapping Algorithm has considerably more functionality that

reaty ol

Fig. 5. Test bench used for the plane implementation. The top left shows the
mapped planes compared to the actual planes. Top right show the robots
perspective of seeing only points, Bottom left shows the results of the EM
algorithm to form planes. Bottom right shows the full map with group
connectivity
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Fig. 6. Results without any noise, the map is generated perfectly
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Fig. 7. Results with noise. The actual map is in yellow and the calculated
map is in blue. The individual noise is set large enough so that points are no
longer distinguishable from one iteration to the next.

described in this paper. Issues such as how to group the
planes, interval splitting, and the motion model when only
one partial plane is observed, are not discussed here. The
implementation is described in more detail in [8] and pseudo
code that requires multiple pages is available in [9].

The plane version of the Relative Mapping Algorithm is
tested in a simulation. The input to the algorithm are points
that are converted to planes using an EM algorithm [10]. The
results are show in Figure 5,6 and 7. Figure 6 shows that
without noise the algorithm is about to generate the map that
contains partial planes and in one case only one partial plane
without error. Figure 7 shows the results of a simulation at
which the noise is set large enough so that individual points
are not distinguishable from one iteration to the next. There
is some error in the results but it is much less than if points
are used as the input. A point based algorithm would not be
able to work given the noise in Figure 7.

The plane implementation of the Relative Mapping
Algorithm worked however there are several issues. One is
that it only works in 2% dimensions. There are also several



design issues. These can be fixed but there is a larger
problem.

The larger problem is that segmenting planes is very
difficult and this prevents the plane implementation from
using real data. There is very little work on planar SLAM at
this time. However, the algorithm itself is very interesting as
it has good features such as it is fast, and not dependant on
current position. The most interesting feature though is that it
has some ability to identify dynamic features. Instead of
working on the plane implementation further, the algorithm
is adapted to using points.

III. THE RELATIVE MAPPING ALGORITHM USING POINTS

The plane version of the Relative Mapping Algorithm is
adapted to use three dimensional points and to be used with
six degrees of freedom robot movement. The registration is
similar to the plane version as points are registered using the
previous iterations untransformed or relative observations
and stored in a data structure similar to Figure 3. Points are
combined into groups where relative maps are created. These
groups are combined to form a global map.

The relative map creation is similar to Figure 1 and 2
except that points do not contains orientation information so
it is not possible to do pair wise relative differences. Instead
at least three points are required. For efficiency, points are
placed into groups where every point is visible in a minimum
interval. Three points are chosen as a basis as shown in
Figure 7. The basis points are chosen so that they are spaced
apart in the group.

To create the consistent basis, the first point B0 is set to
be at (0,0,0). The second point Bl is set to be on the
negative x axis. The third point B2 is set to be on the xz
plane. At the start of an iteration’s relative map calculation, a
transform matrix is created to place the three points on their
designated positions. Then every point in the group is
multiplied by this transformation matrix. This allows the
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Fig. 8. There are two groups, one with green connecting lines and one with
red connecting lines. Each group has three basis points denoted by B0, B1
and B2. These points form a plane that is consistent regardless of the robots
viewpoint.
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Fig. 9. The point charting structure. Each point, 1 through 8 is tracked if is
it visible in a given iteration. This is used in the group creation process
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Fig. 10. The point chart is sorted so that points with more observations in
point four’s interval are in a higher position. Iterations that are in point
four’s observation interval are shaded.
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Fig. 11. A clustering algorithm is used to maximize the quantity of
iterations available for the group to be calculated. The shaded blue section
shows the interval where the first four points are all visible. A minimum of
four points must be added per group, however additional points are added
as long as long as the area of the shaded blue square (number of points
multiplied by the common interval) goes up.

(Ax, Ay, Az) of every point to BO to be consistent regardless
of the robots viewpoint. The (Ax, Ay, Az) is then added to a
running average. After dividing the running average by the
number of observations, a relative map is created. In order to
make the relative map consistent, every point in the group
must be visible if an iteration can be used towards the
average relative difference. The group creation algorithm is
designed to ensure this.

The group creation uses a data structure that tracks every
point that is visible in a given iteration. This data structure is
shown in Figure 9, 10 and 11. To start the group creation



process, a point is chosen that has not been previously
grouped. In the shown example this is point four. Then the
point chart is sorted with points that have a larger interval in
common with point four being higher in the charting
structure.

All groups require a minimum of four points. Three points
that have been previously been mapped and one new one.
Additional points are added by traversing down the point
chart structure. The next point in the structure is evaluated
by first combining its observation interval with the current
group observation interval. If the new interval multiplied by
the total number of points in the group is higher than the
previous total, the evaluated point is added to the group. If
not the grouping algorithm is done.

A grouping process guarantees that each group has at least
three points from a previous grouping that are already
mapped. To align a group’s relative map to the global map,
the previously points in the group that have global locations
are compared to their relative map location using Least
Squared Fitting [11]. The first group is unique in that none
of its points are mapped so they are Least Squared Fitted to
their first observations assuming that the robot was at (0,0,0)
at the first iteration.

There is robustness to the grouping algorithm. Notice in
Figure 11 that point 7 which has large unobserved gaps has
the lowest interval in common with point 4. The grouping
algorithm can place every point into a group, but only points
with large intervals are used as previous points in following
groups. This means that only points with the largest intervals
are used to propagate the map forward. Points with small
intervals such as point 7 are not used to propagate the map
forward and do not affect the overall accuracy of the map.

It is possible to run the grouping process several times.
The first grouping can be performed after a few iterations to
place points onto the map. The second grouping can be
performed after more iterations where there are enough
observations to run dynamic detection. The third grouping
can be performed after points are no longer visible, at which
time their total observation interval is known.

A point’s global location is calculated using its highest
level grouping. When all the points in a lower level group
are mapped in higher level groups, that lower level group
can be removed. This gives a balance between creating
groups quickly and having the groups be as accurate as
possible as more observations are seen.

When a point is grouped for a second time, that group’s
relative map is recalculated from the start of the group’s
observation interval. This iteration has long since past, but it
is possible to be calculated since every point’s
untransformed reading are stored in a data structure (Figure
1). This data storage also makes it possible to identify
dynamic points in O(nlogn) time.

Without storing past relative observations, the
identification of dynamic points can require updating a
correlation matrix. Every point can be compared to every
other point, and points with a high correlation can be
grouped together. Since it is not known in advance which
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Fig. 12. The number of comparisons required versus the number of points.
Even with 40% of the points being dynamic the number of comparisons is
at or below the nlogn line. The binning algorithm become n’> when
approximately 47% of the points are dynamic.

points are correlated, every point needs to be compared
against every other point. This is an O(n”) process.

The Relative Mapping Algorithm runs dynamic detection
after many iterations in the second group creation. It is only
possible to do this since the point’s have their past
observations stored. Rather than compare every point against
every other point, points are placed into bins. Bins are then
compared to each other using only one or a few of the points
present in it. Two heuristics are used: first, when half the
points are in one bin, that bin is the static point bin, second, a
priority queue is used for the bin comparisons. With these
heuristics the dynamic detection can be ran in O(nlogn) time
as shown in Figure 12. Once a point is identified as dynamic
it is no longer used in the map but it is still tracked for
display purposes.

The dynamic point detection removes points with a high
standard deviation. The group creation algorithm only uses
points with large intervals as previous points. The
combination of the dynamic detection and the group creation
creates a robust point selection algorithm where poor points
do not affect the accuracy of the map.

What happens when a point that is already mapped being
observed after many iterations of not being seen? The
registration that uses the previous iterations observations will
not be able to register this point since it has not been seen for
a while. Perhaps current position can be used to translate the
point to global coordinates to find a global match. This is not
ideal since current position may have noise. Current position
is calculated the same way as the plane implementation, by
using the current relative observations compared to their
global mapped locations.

A better way is to add the point as a new point and place it
into a new group. After several iterations, its global mapped
location can be compared to the map to see if there is a
match. If there is a match, the point can be merged with the
matched point. The merging process is simple as the data
storage in Figure 1 is copied over. This merging process
allows the avoidance of the use of current position that may
be noisy in any given iteration. The Relative Mapping
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Fig. 13. Simulation used for testing, a figure eight. The path has a gradual
incline and then a decline, so the robot returns to the middle only after a full
loop
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Fig. 14. Run time in seconds of the algorithm as it does one loop of the
figure 8. It starts with 0 points and ends with 7400. Notice the run time is
constant.
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Fig. 15. Run time as the average quantity of visible points goes up. A
quadtree is used for the point matching up to the 400 point density where it
is replaced by an octtree. A kd-tree was also tested but was found to be
slower.

Algorithm does not use current position or movement,
estimated, predicted or known except for display purposes.

The merging process can automatically closes the loop, if the
map’s accuracy is within the point matching bound.
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Fig. 16. Landmark error of the EKF versus the Relative Mapping
Algorithm.

There are many more details to the implementation of the
point version of the Relative Mapping Algorithm. Only the
major topics are covered in this paper. Additional details are
in [12] and a full description is in [9]. The implementation
uses approximately 5000 lines of C++ code and cannot be
easily described in a mathematical description or pseudo
code. Part of the reason why it is so many lines of code is
that the implementation is optimized for run time
performance. The algorithm is best described using its roots
in software engineering by describing the object oriented
classes that are wused in the algorithm [12]. The
implementation resembles an optimization algorithm such as
Binary Space Partition [13] closer than it resembles any
current SLAM algorithm.

IV. RUN TIME PERFORMANCE

The Relative Point algorithm is tested in a simulation of a
figure eight path shown in Figure 13. The run time is shown
in Figure 14. Figure 14 shows that the algorithm executes in
constant time. Figure 15 shows the results of increasing the
average quantity of visible points. The algorithm’s
computation increases within O(n,logn,) where n, is the
average quantity of visible points, as long as the data
structure that does the point matching is chosen correctly.

V. AcCURACY COMPARISON TO EKF

The Relative Point algorithm is tested against a 6D no
odometry EKF [14] obtained from the Mobile Robot Toolkit
[15]. The point density is reduced to 25 points per 100 units
length to allow the EKF to run. The observation noise is
white Gaussian noise.

Figure 16 shows the landmark error for 900 iterations.
The two algorithms have similar accuracy. If the noise model
used is changed to flat white noise the Relative Mapping
Algorithm outperforms the EKF by a wide margin.

Unfortunately at about 900 iterations, the EKF run time
was approaching 1 second per iteration and slowing down
further, so the testing stopped. The Relative Point algorithm
run time was about 1 millisecond per iteration.



Fig 17. Landmark positions from the EKF in yellow dots and from the
Relative Mapping Algorithm in blue squares.

Unfortunately due to the lack of any motion model the
point implementation of the Relative Mapping Algorithm
cannot be fully tested on the Victoria Park data set. This is
due to the data set having many intervals where the quantity
of visible points falls below four. The point implementation
is designed to work with vision data that should always have
a sufficient quantity of points visible. However there are two
intervals, from 1181 to 1642 and 4220 to 4634 that have at
least the minimum number of points visible.

Figure 17 shows the results of iteration 1181 to 1642. The
Relative Mapping algorithm results are shown in the blue
squares compared (manually stretched) to the results from
[16]. It is not valid to do an exact comparison due to the
short size of the interval used. However the results do show
that the landmark locations of the Relative Mapping
Algorithms are consistent with results from the EKF.

The average runtime of the Relative Mapping algorithm
on the Victoria park data set is 0.00057 seconds. All testing
performed using an AMD 64 3400+.

VI. RESULTS

The Relative Point algorithm has a worst case
computation complexity of O(n,logn,), where n, is the
average quantity of points visible.

The Relative Algorithm is able to identify dynamic points
in O(nlogn) time. It is shown working in the figure eight
simulation with 40% of the points being dynamic.

The accuracy of the Relative Point algorithm is compared
to a 6D EKF implementation that does not use odometery.
The accuracy of the Relative Point algorithm is shown to be

comparable to the EKF. There is also a limited comparison
using a subset of the Victoria Park data set, which the results
are consistent with the results using an EKF.

VII. DISCUSSION

The Relative Mapping Algorithm is perhaps more similar
to optimization algorithms such as Binary Space Partition
than it is to other SLAM algorithms. It has very beneficial
properties in terms of computation complexity and speed,
and the ability to identify dynamic points. Its accuracy has
been shown to be consistent with the EKF in very limited
testing. It can be said that given dynamic noise the Relative
Mapping Algorithm will continue to work whereas
algorithms without this capability will not. However it is too
early and the testing is too limited to make a general
statement about its accuracy.

Perhaps the most important result of this work is that it
proves that SLAM can be done without making use of any
movement or location data, and that SLAM can be solved
using Software Engineering optimization techniques.
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