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Abstract—This paper describes a Relative Plane algorithm. It
uses as input 22D planes generated by an EM algorithm on a
simulated 3D point field. The algorithm subdivides the map into
groups of planes that are visible at the same time. Each group
has a relative map calculated and these are combined into a
global map. Rather than use current position, the last iterations
untransformed observations are used for registration. The
relative maps are calculated averaging the untransformed
locations of pairs of planes. The pairwise comparison also leads
to a method to identify the static edge of a plane when that
plane is entering or leaving the viewpoint. The accuracy of this
algorithm is dependent on the quality of the group selection. It
is possible to adjust the groupings since the past untransformed
observations are stored and available to recompute the relative
maps. The simulation including the EM algorithm on points and
the Relative Plane algorithm is able to run in real time.

I. INTRODUCTION

One of the goals of robotics research is for a robot to be
able to map an area without being given accurate position
data. This is generally referred to as the simultaneous
localization and mapping (SLAM) problem. The problem
can be stated as: how does one place objects on a map if the
current position is unknown or inaccurate and how does one
know the exact current position if there is no map to
reference?

This paper focuses on the SLAM problem using
simulated vision input and no odometery data. There are
many different approaches to this problem. Some of them
are: Thrun et al. [1] who use the EM algorithm to convert a
3D point cloud into planes for texture mapping. Civra et al.
[2] who use a one camera scale invariant feature transform
(SIFT) from Lowe [3] and EKF for accurate outdoor
navigation. Other use vision and occupancy grids such as
the 2D grids [4][5] while some use 3D grids [6].

This work is inspired by observing indoor environments
such as a hallway or an office environment. These
environments can be modeled using planes. A plane can be
defined by its normal and either its midpoint and size, or
corner points. Planes though are not always viewed at their
full size. As a plane enters the view it is growing and when it
leaves it is shrinking. This causes the midpoint or corner
points to have dynamic movement. An algorithm that can
both filter noise and identify which corner points are valid is
ideal.  Preferably the algorithm would do both in an
integrated fashion since this would reduce the computational
complexity of having one algorithm for the filtering and a

second to identify the valid corner points.

Regardless of the SLAM algorithm, planes or generally
landmarks are first observed untransformed in the robot’s
viewpoint. That is, they are viewed from the robot’s position
being at coordinates (0,0,0) before being translated to a
global position on the map. Most algorithms use a filtering
algorithm to determine the current position as accurately as
possible. Current position is then used to register the objects
on the map.

There is another way to generate a map. Relative maps
can be made of landmarks that are seen together. In a relative
map, landmarks are mapped relative to a basis landmark.
Using the untransformed observations of many iterations, a
landmark’s average relative distance to the basis object can
be calculated. These relative maps can be merged together to
form a global map. If the previous iterations untransformed
landmarks are wused to match the next iterations
untransformed landmarks, current position generally does
not have to be used.

Several papers use similar ideas in relative algorithms
such as: Mei et al. [7] who use the concept of relative space
to register the output of stereo cameras. Newman [8] stores
landmarks in terms of relative position and has an algorithm
to constrain the landmarks since there might be multiple
links to each landmarks causing different global locations.
Csorba [9] is perhaps the closest to this work as it links point
based landmarks using a third point for relative angles. Lu et
al [10] does scan matching between frames and stores all of
the scans so that they could be combined to minimize error.
Several papers use the concept of subdividing space such as:
Lisien et al. [11] who use a layered approach combining
EKF with topological maps. Frese [12] provides a
framework called Treemap to subdivide an area into smaller
ones based on which features are close together; and Pinies
et al [13] who use a single camera and divides the features
obtained into sub maps.

The Relative Planar SLAM algorithm presented here is
tested in a simulation using as input 2%:D planes generated
by the EM algorithm [1] on a simulated 3D point field. A
data structure, the ritplane is used to store a single planes
untransformed observations throughout time. It is possible to
derive the relative location and orientation of rltplanes that
are visible in the same time interval calculating the average
of the stored relative location and orientation. By grouping
ritplanes based on visibility and chaining together groups
based on common rltplanes it is possible to generate a map
that is not dependent on maintaining current location as a



state. The accuracy of this algorithm is dependant on the
quality of the group selection that maximizes the quantity of
untransformed planes.

II. Tae RELATIVE PLANE ALGORITHM

The section describes the algorithm in steps: starting
from registering a plane, to forming groupings, to pair wise
plane comparisons and to calculating a map. Then the
motion model is discussed which allows the algorithm to
operate when only one partial plane is seen. The last section
describes efficiency considerations in terms of groupings
and comparison orders.

A. Registering planes

The algorithm receives untransformed planes as input
from the viewpoint’s perspective. Each planes location and
normal is relative to the viewpoint being at location (0,0,0)
and 0°.

Each untransformed plane from the current iteration is
matched against previously seen planes. When the algorithm
starts there are no planes so each newly seen plane is placed
in a data structure called rltplane shown in Figure 1. The
data structure stores the untransformed observations by
iteration. For the rest of this section Rltplane is used to refer
to an instance of plane that has been seen many times from
different viewpoints. Plane refers to a single observation of a
plane.

In the next iteration, rltplanes are available to be
compared to. The Ilatest untransformed plane of each
rltplane is used for matching. If an untransformed plane
matches to a rltplane using the previous iterations
untransformed plane, it is placed into the r/tplane structure.

The Plane matching first compares the last seen iteration.
Two different planes may look the same from the viewpoints
perspective at different times so it is important to only use
planes that have been seen in the last few iterations. The next
test compares the planes equations and continues if they are
within a constant value. Afterwards, the bounding boxes of
each plane are compared to each other. Even if the bounding
boxes overlap, the overlap must be sufficient otherwise two
adjacent planes might incorrectly match to each other. If the
plane matching passes all of its tests, the test gets a positive
score based on how well it passed each test. One plane may
match to more than one rltplane if the planes are close
together. The ritplane with the highest score is the one the
plane is registered to.

It is desirable to not have to compare a plane to every
rltplane since that plane matching will be proportional to the
total amount of planes on the map. Some mechanism should
be used so only recently seen rltplanes are compared to. The
current implementation compares a plane to only rltplanes
from the last few seen groupings, and the ungrouped rltplane
list.

When backtracking or closing the loop previously seen
and mapped planes are observed again. In this case even
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Fig. 1. The rltplane data structure. This is a partial description as the full
data structure contains other variables such the bounding box and the
vertices.

though a plane has already been mapped, the registration
using the previous iterations will fail to find a match. Before
creating a new rltplane the untransformed plane can be
transformed using current position and compared to the
global map. As described later, current position is computed
every iterations by comparing the current plane observations
against the map. The map should always be locally accurate
but if there are errors it may not be globally accurate.
Backtracking should always work but closing the loop will
only work if the global map is accurate to the actual map
within the plane matching bounds. If a plane is successfully
mapped to a previously seen rltplane the untransformed
plane is placed into the structure. The untransformed plane
matching will automatically work in the next iteration.

B. Grouping planes
RitPlanes are grouped according to visibility. An example
of the groups can be seen in Figure 2. In this completed map
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Fig. 2. A completed map. The lines from the planes signify which
grouping the plane belongs to.



the RltPlanes are seen in blue with lines connecting to any
grouping they are part of. The groupings are denoted with
the letter “X” followed by a number.

When a new rltplane structure is created it is placed into
the ungrouped list. This list is queried every iteration and
ritplanes with sufficient observations are processed. If a
rltplane contains below the minimum amount of
observations, after a constant amount of iterations it is
removed from the list.

A grouping contains only rltplanes that are seen in the
same time interval. When a rltplane is first seen it may be
difficult to judge which grouping it should belong to. The
initial algorithm simply checks if an ungrouped ritplane is
present in the same time interval as every other rltplane in a
given grouping. If it is, the ungrouped rltplane is placed into
that group and removed from the ungrouped list.

This initial grouping may not be the most efficient
grouping in terms of the time interval available to calculate
the relative map. Since rltplanes are placed onto the map
after only a few iterations, it is not known how many total
iterations that ritplane will have in common with the rest of
the group. It can be possible to wait for more viewed
iterations to add an rltplane to a group but then the ritplane
will not be present in the map for those iterations. A better
way it to check in the future how well the grouping is, and if
required change it. This is described in a later section.

When a rltplane cannot be added to a previous grouping, a
new one is created. The new grouping contains ritplanes
from the previous grouping that are in the same time interval
as the ungrouped ritplane. This is required since the
grouping’s relative map is to be linked to a previous
grouping to form a global map.

C. Plane relative comparisons

Given two ritplanes that are present in the same time
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Fig. 3. The relative distance is translation invariant as seen in viewpoint
a and b, but not rotational invariant as seen in viewpoint ¢ and d.

interval it is simple to calculate their relative locations. Some
care most be taken though since the viewpoint may be
moving and rotating. Figure 3 shows that using just the
midpoint of two planes is translation invariant to movement
of the viewpoint but not rotational invariant.

To compare two planes, the normal of one plane is used to
rotate both planes so that the first plane is on always on the
same basis. For example, the first plane can be rotated so
that it is always on the x-axis. Then every midpoint
comparison will be rotation and translation invariant.

Since the comparison is rotation and translation invariant
the average of the comparisons over the time interval where
the two rltplanes are observed can be used to filter out noise.

Given two planes rltplane 1 and rltplane 2 the algorithm to
solve the location average difference L., (Ax, Ay, Az) and
average orientation average difference O,, over the interval
where they are both visible is:

Initial Lay and Oay to zero

For each iteration in the given interval
Obtain the untransformed planes from each rltplane
Rotate both planes so rltplane 1 is at 0 degrees
Add the Ax Ay Az to L,,
Add the orientation difference to O,,

Divide Luy ana Oa by the size of the interval

The above algorithm works if the mid point is static,
however it is not. When a plane is first seen in a viewpoint it
is growing. When it leaves the viewpoint, as the viewpoint
passes it by it is shrinking. If the midpoint is used for the
comparisons it will cause a map error to occur. The growing
and shrinking error, and the difficulty filtering it led to this
algorithm. It was realized that the problem was not a filtering
problem, rather it is an identification problem.

Each plane, as long as it is smaller than the viewpoint's
viewing distance should always have at least one static edge
seen. This static edge should always be identified and used
for the comparisons instead of the midpoint. The static edge

Fig. 4. The viewing frustums are the trapezoid shapes. There are two
planes inside both only partially visible. Extending the plane size from
the corner points (left figure) yields two correct midpoints (circle) and
two incorrect ones (triangles). This forms 4 comparison pairs (right
figure) with one is green being the correct pair.



should be identified at a minimum computation cost.

It is not desired to identify the edges using an algorithm
that correlates one plane against many. Also using the
average movement compared to an edge can be dangerous if
there are only a few planes as the average may be wrong.
The method used to solve this problem takes advantage of
the fact that planes are compared to other planes in pairs.

Figure 4 shows the method used to identify static edges in
pair wise comparisons. Figure 4 shows two planes and a
viewing frustum where both planes are only partially seen,
and the mid point is incorrect.

Referring to the left side of Figure 4, two assumed
midpoints for each plane can be calculated by extending the
maximum size of a plane along each of the edges. The circle
denotes the correct midpoint and the triangle denotes the
incorrect one.

Referring to the right side of Figure 4, each assumed
midpoint can be compared against both midpoints from the
other plane. This forms four comparisons pairs, which will
all have an average distance over a time interval. It is
possible to calculate the standard deviation for each of the
four pairs. The pairing with the assumed midpoints from the
static edges will have the lowest standard deviation. The
edge that is static is saved since it is later used when linking
the map and calculating current position.

It may be possible that there are two planes that are parallel
but across from each other that will have two comparison
pairs with a low standard deviation. In this case one of the
pairs contains two static edges and the other two dynamic
edges. Without other information it is not possible to know
which one is static and which one is dynamic. To avoid this,
a plane reordering process described in a later section
rearranges the pairings used for the comparisons.

One issue that must be taken care of is that the static
pairings changes depending if a plane is growing as it is first
seen or shrinking as it leaves the viewpoint. Which edges are
static changes as the viewpoint moves. The interval used to
calculate the average and standard deviation must be split up
if it is detected if a plane changes state from growing to
shrinking.

The current implementation monitors the plane sizes to
adjust the intervals. It may be also possible to monitor the
output of the averages and identify the changing static edges
that way. Also the current implementation uses assumed
midpoints rather than using edge comparisons. It may be
possible to instead use edge comparisons instead of assumed
midpoint comparisons.

D. Relative and global maps.

Given a grouping, a comparison chain can be formed. The
comparison chain links each rltplane in the group to every
other rltplane in pair wise comparisons. Starting from one
rltplane at position (0,0,0) every other rltplane has its
relative position and orientation calculated to the first
rltplane. This forms a relative map for each grouping from a

basis ritplane. For display purposes the centriod of the group
can be calculated and used for rendering purposes as shown
in Figure 2.

The first observed iteration of the planes can be
assumed to place the robot’s viewpoint at (0,0,0) or some
other inputted coordinate. The first grouping can be placed
on the global map by comparing the relative maps
coordinates of each ritplane to its first observation.

Every other grouping contains rl/tplanes that are present
in previous groupings. These rltplanes can be used to
translate the basis rltplane in a grouping from (0,0,0) relative
coordinates to global coordinates. By processing each
relative group using previously globally mapped ritplanes, a
global map is created.

With a global map, current position is easy to calculate.
The present observation’s untransformed planes can be
compared to the global map to calculate the current position.
Current position is only used in a functional sense for
backtracking and closing the loop.

It is possible to avoid any use of current position by
instead always creating new rltplanes rather than use global
matching. Once the rltplanes are placed onto the global map
it can be checked to see if it should be merged with a
previous rltplane. This should work with backtracking but it
will only work closing the loop if the map is accurate within
the plane matching bounds. The current implementation does
not do this since it would likely use more overhead. However
if current position is noisy or affected by dynamic data, it
may be desirable to use this method.

E. Motion Model

Arriving at the end of the hallway and having only one
plane visible can be a common occurrence encountered when
traveling in a planar environment. This is shown in Figure 5,
where this case occurs every time the robot turns. One
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Fig. 5. Note in the top right only one partial plane is seen. The part of
the plane that is shaded red is the only part visible in the frustum. At
this point the robot is on its second time around the map.



solution might be to use the distance of point to plane
equation to solve the current position. This unfortunately
would lead to relying on using the previous location to
calculate the current location, which is not ideal. There is a
better solution than this that is similar.

The ritplane at the end of the hallway would be correctly
placed on the map earlier when compared to rltplane passed
by that are no longer visible. The problem therefore is not
the placement of the rltplane. The only unknown information
is the ritplane’s maximum size as it expands as the viewpoint
rotates. So the problem is not to calculate the current
position, rather how to track how the ritplane expands as the
viewpoint moves. Notice that this means that the ritplane
orientation is not affected by any data given when the
viewpoint is rotating since it is fixed to its position given by
the rltplanes that have been passed by.

When the algorithm detects that only one partial ritplane
is present it switches to the motion model. The maximum
ritplane size is calculated as the robot’s viewpoint moves,
but the global position and orientation are not. As soon a
second plane is observed the motion model ends.

F. Groupings and plane comparisons order

It is ideal to select the groupings and plane comparison
order such that the largest possible time interval is available
for the rltplane comparisons. Unfortunately when a rltplane
is first observed, it is not evident what the best grouping
might be. It is also not ideal to wait until the best grouping is
known to place the rltplane into a group and onto a map.

The algorithm uses a regrouping and reordering process to
optimize the intervals available for the comparisons. After a
constant amount of iterations, a group is evaluated for
reordering. Reordering looks at the ritplane comparison
order and chooses the comparison order to maximize the
total quantity of iterations used for the comparisons.

After another constant amount of iterations, a second
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Fig. 6. An example of the simulation used to test the algorithm. The top
left window shows the relative map in blue compared to the global map
in yellow. The bottom left window shows the output of the EM algorithm
compared to the input points. The top right shows the 3D points used as
the input. The bottom right shows the connectivity of the relative map

evaluation occurs. The group is evaluated to find any
rltplane that have a small comparison interval. Rltplane with
an interval too small are removed from the group, and
attempted to be placed into another group. If a ritplane
cannot be placed into any group that would have sufficient
iterations for that plane to be placed on the map, it is
removed from the map altogether.

An algorithm that places objects into groups and may
revaluate the groups in the future requires sufficient storage
of past untransformed observations. These untransformed
observations are used to recalculate a new grouping. The
storage is required to be at least as big as it is possible to go
back in iterations in the regrouping process.

III. Resurrs

The results are shown in Figures 6,7 and 8. Figure 6
shows an example of the simulation used. The simulation
uses 3D points as the input and those points are used to
generate planes using the EM algorithm. Figure 7 shows the
results of the simulation with no noise. The algorithm is able
to reconstruct the map without any errors. Figure 8 shows the
results of the simulation with noise being applied to each
point. The noise used is sufficient so it is not possible to
identify individual points. When the noise is further
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Fig. 8. Results of a simulation with noise.



increased in testing, it starts to become difficult for the EM
algorithm to indentify planes.

The simulation including the EM algorithm to convert the
points into planes runs in real time at 30 iterations a second
on an AMD 64 3400+.

IV. ConcLusioN

The Relative Plane algorithm shows a lot of potential. Its
main feature is that it is able to identify the static edges
efficiently. It also has a motion model that works when only
one partial plane is visible.

Any future testing on actual data requires segmented
planes or a point cloud that can be segmented into planes
with the EM algorithm. For the algorithm to work, the input
data would have to be continuous, so there are enough
observations to be able to identify static edges.

The Relative Plane algorithm does several things well: it
can work with noisy input data, identify static edges, and it
works in real time. It was realized that this algorithm using
points rather than planes would have the same properties.
This is discussed in future work.

V. Future Work

There are several implementation issues that can be
improved upon. The current implementation is only 2%4D. It
would be desirable for the algorithm to be in full 3D. There
are several places where some parts of the algorithm are not
as computationally efficient as they can be.

There are also some architecture issues. One of the largest
is that the groups are hard coupled to each other with linking
planes. When a plane is removed from a group this link may
break. The safest way to solve this is to have a roll back
mechanism to roll back time, change the grouping and roll
forward time. If the groups are soft linked this does not need
to occur.

The current implementation has a limited mechanism for
dynamic noise. It can remove planes that have limited
calculation intervals but cannot deal with a plane that is
moving around.

The Relative Point algorithm [14] shown in Figure 9 is
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Fig. 9. An example of the Relative Point algorithm in a 6D simulation.
Points are grouped into relative maps using their untransformed
observations.

adapted from this algorithm. All of the issues mentioned with
the Relative Plane algorithm are fixed in its implementation.
The Relative Point algorithm is proven to have a
computation complexity of O(n.logn,) where n, is the
average quantity of observable points. For an average of 98
visible points per iteration, and a total of 1557 points, its
average execution speed is 2 ms. The Relative Point
algorithm uses the untransformed observations and a binning
algorithm to identify dynamic points in O(nlogn). It is also
shown to have comparable accuracy to an EKF in a 6D
simulation.
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