
Abstract—This paper describes a Relative Plane algorithm. It 
uses as input 2½D planes generated by an EM algorithm on a 
simulated 3D point field. The algorithm subdivides the map into 
groups of planes that are visible at the same time.  Each group 
has a relative map calculated and these are combined into a 
global map. Rather than use current position, the last iterations 
untransformed  observations  are  used  for  registration.  The 
relative  maps  are  calculated  averaging  the  untransformed 
locations of pairs of planes. The pairwise comparison also leads 
to a method to identify  the static  edge of  a plane when that 
plane is entering or leaving the viewpoint. The accuracy of this 
algorithm is dependent on the quality of the group selection. It 
is possible to adjust the groupings since the past untransformed 
observations are stored and available to recompute the relative 
maps. The simulation including the EM algorithm on points and 
the Relative Plane algorithm is able to run in real time. 

I. INTRODUCTION

One of the goals of robotics research is for a robot to be 
able to map an area without being given accurate position 
data.  This  is  generally  referred  to  as  the  simultaneous 
localization  and  mapping  (SLAM)  problem.  The  problem 
can be stated as: how does one place objects on a map if the 
current position is unknown or inaccurate and how does one 
know  the  exact  current  position  if  there  is  no  map  to 
reference?

This  paper  focuses  on  the  SLAM  problem  using 
simulated  vision  input  and  no  odometery data.  There  are 
many different  approaches to this problem. Some of  them 
are: Thrun et al. [1] who use the EM algorithm to convert a 
3D point cloud into planes for texture mapping.  Civra et al. 
[2] who use a one camera scale invariant feature transform 
(SIFT)  from  Lowe  [3]  and  EKF  for  accurate  outdoor 
navigation.  Other use vision and occupancy grids such as 
the 2D grids [4][5] while some use 3D grids [6].  

This work is inspired by observing indoor environments 
such  as  a  hallway  or  an  office  environment.  These 
environments can be modeled using planes. A plane can be 
defined by its  normal and either  its  midpoint  and size,  or 
corner points. Planes though are not always viewed at their 
full size. As a plane enters the view it is growing and when it 
leaves  it  is  shrinking.  This  causes  the midpoint  or  corner 
points  to  have dynamic movement.  An algorithm that  can 
both filter noise and identify which corner points are valid is 
ideal.   Preferably  the  algorithm  would  do  both  in  an 
integrated fashion since this would reduce the computational 
complexity of having one algorithm for the filtering and a 

second to identify the valid corner points.
Regardless  of the SLAM algorithm, planes or  generally 

landmarks  are  first  observed  untransformed in the  robot’s 
viewpoint. That is, they are viewed from the robot’s position 
being  at  coordinates  (0,0,0)  before  being  translated  to  a 
global position on the map. Most algorithms use a filtering 
algorithm to determine the current position as accurately as 
possible.  Current position is then used to register the objects 
on the map.  

There is another way to generate a  map. Relative maps 
can be made of landmarks that are seen together. In a relative 
map,  landmarks  are  mapped  relative  to  a  basis  landmark. 
Using the untransformed observations of many iterations, a 
landmark’s average relative distance to the basis object can 
be calculated. These relative maps can be merged together to 
form a global map. If the previous iterations untransformed 
landmarks  are  used  to  match  the  next  iterations 
untransformed  landmarks,  current  position  generally  does 
not have to be used.  

Several  papers  use  similar  ideas  in  relative  algorithms 
such as: Mei et al. [7] who use the concept of relative space 
to register the output of stereo cameras. Newman [8] stores 
landmarks in terms of relative position and has an algorithm 
to  constrain  the  landmarks  since  there  might  be  multiple 
links to each landmarks causing different global  locations. 
Csorba [9] is perhaps the closest to this work as it links point 
based landmarks using a  third point for relative angles. Lu et 
al [10] does scan matching between frames and stores all of 
the scans so that they could be combined to minimize error. 
Several papers use the concept of subdividing space such as: 
Lisien  et  al.  [11]  who use  a  layered  approach  combining 
EKF  with  topological  maps.  Frese  [12]  provides  a 
framework called Treemap to subdivide an area into smaller 
ones based on which features are close together; and Pinies 
et al  [13] who use a single camera and divides  the features 
obtained into sub maps. 

The Relative Planar  SLAM algorithm presented here  is 
tested in a simulation using as input 2½D planes generated 
by the EM algorithm [1] on a simulated 3D point field. A 
data structure, the  rltplane is used to store a single planes 
untransformed observations throughout time. It is possible to 
derive the relative location and orientation of  rltplanes that 
are visible in the same time interval calculating the average 
of the stored relative location and  orientation. By grouping 
rltplanes based  on  visibility and  chaining together  groups 
based on common rltplanes it is possible to generate a map 
that is not dependent on maintaining current location as a 
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state.  The accuracy of  this  algorithm is dependant  on the 
quality of the group selection that maximizes the quantity of 
untransformed planes.  

II.THE RELATIVE PLANE ALGORITHM

The section describes  the algorithm in steps:  starting 
from registering a plane, to forming groupings, to pair wise 
plane  comparisons  and  to  calculating  a  map.   Then  the 
motion  model  is  discussed  which allows the  algorithm to 
operate when only one partial plane is seen. The last section 
describes  efficiency  considerations  in  terms  of  groupings 
and comparison orders.

A. Registering planes
The  algorithm  receives  untransformed  planes  as  input 

from the viewpoint’s perspective. Each planes location and 
normal is relative to the viewpoint being at location (0,0,0) 
and 00. 

Each  untransformed  plane  from the  current  iteration  is 
matched against previously seen planes. When the algorithm 
starts there are no planes so each newly seen plane is placed 
in a data structure called  rltplane shown in Figure 1.  The 
data  structure  stores  the  untransformed  observations  by 
iteration. For the rest of this section Rltplane is used to refer 
to an instance of plane that has been seen many times from 
different viewpoints. Plane refers to a single observation of a 
plane.

In  the  next  iteration,  rltplanes  are  available  to  be 
compared  to.  The  latest  untransformed  plane  of  each 
rltplane  is  used  for  matching.  If  an  untransformed  plane 
matches  to  a  rltplane using  the  previous  iterations 
untransformed plane, it is placed into the rltplane structure.

The Plane matching first compares the last seen iteration. 
Two different planes may look the same from the viewpoints 
perspective at different times so it is important to only use 
planes that have been seen in the last few iterations. The next 
test compares the planes equations and continues if they are 
within a constant value. Afterwards, the bounding boxes of 
each plane are compared to each other. Even if the bounding 
boxes overlap, the overlap must be sufficient otherwise two 
adjacent planes might incorrectly match to each other. If the 
plane matching passes all of its tests, the test gets a positive 
score based on how well it passed each test. One plane may 
match  to  more  than  one  rltplane if  the  planes  are  close 
together. The  rltplane  with the highest score is the one the 
plane is registered to.

It  is  desirable  to not  have to compare  a plane to  every 
rltplane since that plane matching will be proportional to the 
total amount of planes on the map. Some mechanism should 
be used so only recently seen rltplanes are compared to. The 
current implementation compares a plane to only  rltplanes  
from the last few seen groupings, and the ungrouped rltplane  
list.

When backtracking or  closing the loop  previously seen 
and  mapped  planes  are  observed  again.  In  this  case  even 

though a  plane  has  already been  mapped,  the  registration 
using the previous iterations will fail to find a match. Before 
creating  a  new  rltplane  the  untransformed  plane  can  be 
transformed  using  current  position  and  compared  to  the 
global map. As described later, current position is computed 
every iterations by comparing the current plane observations 
against the map. The map should always be locally accurate 
but  if  there  are  errors  it  may  not  be  globally  accurate. 
Backtracking should always work but closing the loop will 
only work if the global map is accurate to the actual map 
within the plane matching bounds. If a plane is successfully 
mapped  to  a  previously  seen  rltplane the  untransformed 
plane is placed into the structure. The untransformed plane 
matching will automatically work in the next iteration.

B. Grouping planes
RltPlanes are grouped according to visibility. An example 

of the groups can be seen in Figure 2. In this completed map 

Fig. 2. A completed map. The lines from the planes signify which 
grouping the plane belongs to.
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Fig. 1. The rltplane data structure. This is a partial description as the full 
data structure contains other variables such the bounding box and the 
vertices.



the  RltPlanes are seen in blue with lines connecting to any 
grouping they are part  of. The groupings are denoted with 
the letter “X” followed by a number.

 When a new rltplane structure is created it is placed into 
the ungrouped list.  This list  is queried every iteration and 
rltplanes  with  sufficient  observations  are  processed.  If  a 
rltplane contains  below  the  minimum  amount  of 
observations,  after  a  constant  amount  of  iterations  it  is 
removed from the list. 

A grouping contains  only  rltplanes that  are  seen in the 
same time interval. When a  rltplane is first seen it may be 
difficult to judge which grouping it should belong to. The 
initial algorithm simply checks if an ungrouped  rltplane  is 
present in the same time interval as every other rltplane in a 
given grouping. If it is, the ungrouped rltplane is placed into 
that group and removed from the ungrouped list. 

This  initial  grouping  may  not  be  the  most  efficient 
grouping in terms of the time interval available to calculate 
the relative map. Since  rltplanes  are  placed  onto the map 
after only a few iterations, it is not known how many total 
iterations that rltplane will have in common with the rest of 
the  group.  It  can  be  possible  to  wait  for  more  viewed 
iterations to add an rltplane to a group but then the rltplane  
will not be present in the map for those iterations. A better 
way it to check in the future how well the grouping is, and if 
required change it. This is described in a later section. 

When a rltplane cannot be added to a previous grouping, a 
new one  is  created.  The  new grouping  contains  rltplanes  
from the previous grouping that are in the same time interval 
as  the  ungrouped  rltplane.  This  is  required  since  the 
grouping’s  relative  map  is  to  be  linked  to  a  previous 
grouping to form a global map.

C. Plane relative comparisons
  Given two  rltplanes that  are present in the same time 

interval it is simple to calculate their relative locations. Some 
care  most  be  taken  though  since  the  viewpoint  may  be 
moving  and  rotating.  Figure  3  shows  that  using  just  the 
midpoint of two planes is translation invariant to movement 
of the viewpoint but not rotational invariant.

To compare two planes, the normal of one plane is used to 
rotate both planes so that the first plane is on always on the 
same basis. For example,  the first plane can be rotated so 
that  it  is  always  on  the  x-axis.  Then  every  midpoint 
comparison will be rotation and translation invariant.

Since the comparison is rotation and translation invariant 
the average of the comparisons over the time interval where 
the two rltplanes are observed can be used to filter out noise. 

Given two planes rltplane 1 and rltplane 2 the algorithm to 
solve the location average difference Lav  (Δx, Δy,  Δz) and 
average orientation average difference Oav over the interval 
where they are both visible is:

Initial Lav and Oav to zero
For each iteration in the given interval

Obtain the untransformed planes from each rltplane
Rotate both planes so rltplane 1 is at 0 degrees
Add the Δx Δy Δz to Lav

Add the orientation difference to Oav

Divide Lav and Oav by the size of the interval

The  above  algorithm  works  if  the  mid  point  is  static, 
however it is not. When a plane is first seen in a viewpoint it 
is growing. When it leaves the viewpoint, as the viewpoint 
passes it  by it  is shrinking. If the midpoint is used for the 
comparisons it will cause a map error to occur. The growing 
and shrinking error, and the difficulty filtering it led to this 
algorithm. It was realized that the problem was not a filtering 
problem, rather it is an identification problem.

Each plane, as long as it  is smaller than the viewpoint's 
viewing distance should always have at least one static edge 
seen. This static edge should always be identified and used 
for the comparisons instead of the midpoint. The static edge Δy

Δx
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Fig. 3. The relative distance is translation invariant as seen in viewpoint 
a and b, but not rotational invariant as seen in viewpoint c and d.

  

Fig. 4. The viewing frustums are the trapezoid shapes.  There are two 
planes inside both only partially visible.  Extending the plane size from 
the corner points (left figure) yields two correct midpoints (circle) and 
two incorrect ones (triangles).  This forms 4 comparison pairs (right 
figure) with one is green being the correct pair. 



should be identified at a minimum computation cost.  
It  is not desired to identify the edges using an algorithm 

that  correlates  one  plane  against  many.  Also  using  the 
average movement compared to an edge can be dangerous if 
there are only a few planes as the average may be wrong. 
The method used to solve this problem takes advantage of 
the fact that planes are compared to other planes in pairs.

Figure 4 shows the method used to identify static edges in 
pair  wise comparisons.  Figure  4  shows two planes  and  a 
viewing frustum where both planes are only partially seen, 
and the mid point is incorrect.

Referring  to  the  left  side  of  Figure  4,  two  assumed 
midpoints for each plane can be calculated by extending the 
maximum size of a plane along each of the edges. The circle 
denotes  the  correct  midpoint  and  the  triangle  denotes  the 
incorrect one.

Referring  to  the  right  side  of  Figure  4,  each  assumed 
midpoint can be compared against both midpoints from the 
other plane. This forms four comparisons pairs, which will 
all  have  an  average  distance  over  a  time  interval.  It  is 
possible to calculate the standard deviation for each of the 
four pairs. The pairing with the assumed midpoints from the 
static  edges  will  have  the  lowest  standard  deviation.  The 
edge that is static is saved since it is later used when linking 
the map and calculating current position.

It may be possible that there are two planes that are parallel 
but  across  from each other  that  will have two comparison 
pairs with a low standard deviation. In this case one of the 
pairs contains two static edges and the other two dynamic 
edges. Without other information it is not possible to know 
which one is static and which one is dynamic. To avoid this, 
a  plane  reordering  process  described  in  a  later  section 
rearranges the pairings used for the comparisons. 

One  issue  that  must  be  taken  care  of  is  that  the  static 
pairings changes depending if a plane is growing as it is first 
seen or shrinking as it leaves the viewpoint. Which edges are 
static changes as the viewpoint moves. The interval used to 
calculate the average and standard deviation must be split up 
if  it  is  detected  if  a  plane  changes state  from growing to 
shrinking. 

The  current  implementation  monitors  the  plane  sizes  to 
adjust the intervals. It  may be also possible to monitor the 
output of the averages and identify the changing static edges 
that  way.  Also  the  current  implementation  uses  assumed 
midpoints  rather  than  using edge  comparisons.  It  may be 
possible to instead use edge comparisons instead of assumed 
midpoint comparisons.

D. Relative and global maps.
Given a grouping, a comparison chain can be formed. The 

comparison chain links each  rltplane  in the group to every 
other  rltplane  in pair wise comparisons. Starting from one 
rltplane  at  position  (0,0,0)  every  other  rltplane  has  its 
relative  position  and  orientation  calculated  to  the  first 
rltplane. This forms a relative map for each grouping from a 

basis rltplane. For display purposes the centriod of the group 
can be calculated and used for rendering purposes as shown 
in Figure 2.

The  first  observed  iteration  of  the  planes  can  be 
assumed to place the robot’s viewpoint at (0,0,0)  or  some 
other inputted coordinate. The first grouping can be placed 
on  the  global  map  by  comparing  the  relative  maps 
coordinates of each rltplane to its first observation.

Every other grouping contains rltplanes that are present 
in  previous  groupings.  These  rltplanes can  be  used  to 
translate the basis rltplane in a grouping from (0,0,0) relative 
coordinates  to  global  coordinates.  By  processing  each 
relative group using previously globally mapped rltplanes, a 
global map is created.

With a global map, current position is easy to calculate. 
The  present  observation’s  untransformed  planes  can  be 
compared to the global map to calculate the current position. 
Current  position  is  only  used  in  a  functional  sense  for 
backtracking and closing the loop.

It  is  possible  to  avoid  any  use  of  current  position  by 
instead always creating new rltplanes rather than use global 
matching. Once the rltplanes are placed onto the global map 
it  can  be  checked  to  see  if  it  should  be  merged  with  a 
previous rltplane. This should work with backtracking but it 
will only work closing the loop if the map is accurate within 
the plane matching bounds. The current implementation does 
not do this since it would likely use more overhead. However 
if current position is noisy or affected by dynamic data,  it 
may be desirable to use this method.

E. Motion Model
Arriving at the end of the hallway and having only one 

plane visible can be a common occurrence encountered when 
traveling in a planar environment. This is shown in Figure 5, 
where  this  case  occurs  every  time  the  robot  turns.  One 

Fig. 5. Note in the top right only one partial plane is seen. The part of 
the plane that is shaded red is the only part visible in the frustum.  At 
this point the robot is on its second time around the map.



Fig. 7. Results of a simulation without noise.

solution  might  be  to  use  the  distance  of  point  to  plane 
equation  to  solve  the  current  position.  This  unfortunately 
would  lead  to  relying  on  using  the  previous  location  to 
calculate the current location, which is not ideal. There is a 
better solution than this that is similar. 

The rltplane at the end of the hallway would be correctly 
placed on the map earlier when compared to rltplane passed 
by that are no longer visible. The problem therefore is not 
the placement of the rltplane. The only unknown information 
is the rltplane’s maximum size as it expands as the viewpoint 
rotates.  So  the  problem  is  not  to  calculate  the  current 
position, rather how to track how the rltplane expands as the 
viewpoint  moves.  Notice  that  this  means that  the  rltplane 
orientation  is  not  affected  by  any  data  given  when  the 
viewpoint is rotating since it is fixed to its position given by 
the rltplanes that have been passed by.

When the algorithm detects that only one partial  rltplane 
is  present it  switches to the motion model.  The maximum 
rltplane size is calculated as the robot’s viewpoint moves, 
but  the global  position and orientation are not.  As soon a 
second plane is observed the motion model ends.

F. Groupings and plane comparisons order
It  is ideal  to select the groupings and plane comparison 

order such that the largest possible time interval is available 
for the rltplane comparisons. Unfortunately when a rltplane 
is  first  observed,  it  is  not  evident  what  the best  grouping 
might be. It is also not ideal to wait until the best grouping is 
known to place the rltplane into a group and onto a map.

The algorithm uses a regrouping and reordering process to 
optimize the intervals available for the comparisons. After a 
constant  amount  of  iterations,  a  group  is  evaluated  for 
reordering.  Reordering  looks  at  the  rltplane comparison 
order  and  chooses  the  comparison  order  to  maximize the 
total quantity of iterations used for the comparisons.

After  another  constant  amount  of  iterations,  a  second 

evaluation  occurs.  The  group  is  evaluated  to  find  any 
rltplane that have a small comparison interval. Rltplane with 
an  interval  too  small  are  removed  from  the  group,  and 
attempted  to  be  placed  into  another  group.  If  a  rltplane 
cannot be placed into any group that would have sufficient 
iterations  for  that  plane  to  be  placed  on  the  map,  it  is 
removed from the map altogether.

An  algorithm that  places  objects  into  groups  and  may 
revaluate the groups in the future requires sufficient storage 
of  past  untransformed  observations.  These  untransformed 
observations  are  used  to  recalculate  a  new grouping.  The 
storage is required to be at least as big as it is possible to go 
back in iterations in the regrouping process. 

III. RESULTS

The  results  are  shown in Figures  6,7  and  8.   Figure  6 
shows an example of the simulation used.  The simulation 
uses  3D points  as  the  input  and  those  points  are  used  to 
generate planes using the EM algorithm. Figure 7 shows the 
results of the simulation with no noise. The algorithm is able 
to reconstruct the map without any errors. Figure 8 shows the 
results of the simulation with noise being applied to each 
point.  The noise used is sufficient  so it  is  not  possible to 
identify  individual  points.  When  the  noise  is  further 

Fig. 8. Results of a simulation with noise.

Fig. 6. An example of the simulation used to test the algorithm. The top 
left window shows the relative map in blue compared to the global map 
in yellow. The bottom left window shows the output of the EM algorithm 
compared to the input points.  The top right shows the 3D points used as 
the input. The bottom right shows the connectivity of the relative map



increased in testing, it starts to become difficult for the EM 
algorithm to indentify planes.

The simulation including the EM algorithm to convert the 
points into planes runs in real time at 30 iterations a second 
on an AMD 64 3400+.

IV. CONCLUSION

The Relative Plane algorithm shows a lot of potential. Its 
main feature  is  that  it  is  able  to  identify the  static  edges 
efficiently. It also has a motion model that works when only 
one partial plane is visible.  

Any  future  testing  on  actual  data  requires  segmented 
planes or  a point  cloud that can be segmented into planes 
with the EM algorithm. For the algorithm to work, the input 
data  would  have  to  be  continuous,  so  there  are  enough 
observations to be able to identify static edges. 

The Relative Plane algorithm does several things well: it 
can work with noisy input data, identify static edges, and it 
works in real time. It was realized that this algorithm using 
points  rather  than planes would have the same properties. 
This is discussed in future work.

V. FUTURE WORK

There  are  several  implementation  issues  that  can  be 
improved upon.  The current implementation is only 2½D. It 
would be desirable for the algorithm to be in full 3D. There 
are several places where some parts of the algorithm are not 
as computationally efficient as they can be. 

There are also some architecture issues. One of the largest 
is that the groups are hard coupled to each other with linking 
planes. When a plane is removed from a group this link may 
break.  The safest  way to solve this is  to have a roll  back 
mechanism to roll back time, change the grouping and roll 
forward time. If the groups are soft linked this does not need 
to occur.

The current implementation has a limited mechanism for 
dynamic  noise.  It  can  remove  planes  that  have  limited 
calculation  intervals  but  cannot  deal  with  a  plane  that  is 
moving around.

The Relative Point algorithm [14] shown in Figure 9 is 

adapted from this algorithm. All of the issues mentioned with 
the Relative Plane algorithm are fixed in its implementation. 
The  Relative  Point  algorithm  is  proven  to  have  a 
computation  complexity  of  O(nalogna)  where  na is  the 
average quantity of observable points. For an average of 98 
visible points per  iteration, and a total  of 1557 points,  its 
average  execution  speed  is  2  ms.  The  Relative  Point 
algorithm uses the untransformed observations and a binning 
algorithm to identify dynamic points in O(nlogn). It is also 
shown to  have  comparable  accuracy  to  an  EKF in  a  6D 
simulation.
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Fig. 9. An example of the Relative Point algorithm in a 6D simulation. 
Points are grouped into relative maps using their untransformed 
observations.
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